Multihypothesis Compressed Video Sensing Technique

In this paper, we present a compressive sampling and multihypothesis (MH) reconstruction strategy for video sequences that has a rather simple encoder, while the decoding system is not that complex. We introduce a convex cost function that incorporates the MH technique with the sparsity constraint and the Tikhonov regularization. Consequently, we derive a new iterative algorithm based on these criteria. This algorithm surpasses its counterparts (Elasticnet and Tikhonov) in recovery performance. Besides, it is computationally much faster than Elasticnet and comparable with Tikhonov. Our extensive simulation results confirm these claims.

[1]  Ehsan Elhamifar,et al.  Sparse subspace clustering , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  E.J. Candes Compressive Sampling , 2022 .

[3]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[4]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[5]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[6]  Babak Hossein Khalaj,et al.  A unified approach to sparse signal processing , 2009, EURASIP Journal on Advances in Signal Processing.

[7]  Xiaoming Yuan,et al.  A Note on the Alternating Direction Method of Multipliers , 2012, J. Optim. Theory Appl..

[8]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[9]  James E. Fowler,et al.  Video Compressed Sensing with Multihypothesis , 2011, 2011 Data Compression Conference.

[10]  James E. Fowler,et al.  Block Compressed Sensing of Images Using Directional Transforms , 2010, 2010 Data Compression Conference.

[11]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[12]  Jian Chen,et al.  An elastic net-based hybrid hypothesis method for compressed video sensing , 2015, Multimedia Tools and Applications.

[13]  Farrokh Marvasti,et al.  OFDM pilot allocation for sparse channel estimation , 2011, EURASIP J. Adv. Signal Process..

[14]  James E. Fowler,et al.  Block compressed sensing of images using directional transforms , 2009, ICIP.

[15]  Thomas S. Huang,et al.  Distributed Video Coding using Compressive Sampling , 2009, 2009 Picture Coding Symposium.

[16]  James E. Fowler,et al.  Residual Reconstruction for Block-Based Compressed Sensing of Video , 2011, 2011 Data Compression Conference.

[17]  Yu Meng,et al.  Adaptive Multihypothesis Prediction Algorithm for Distributed Compressive Video Sensing , 2013, Int. J. Distributed Sens. Networks.

[18]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[19]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[20]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[21]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[22]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[23]  Chun-Shien Lu,et al.  Distributed compressive video sensing , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.