Coordination Polymers of 5-Alkoxy Isophthalic Acids

The topology of coordination polymers containing 5-alkoxy isophthalic acids and first row transition metals was found to be dependent on the combination of solvent system used and length of the alkyl chain. Four different framework types were identified: Phase A, M6(ROip)5(OH)2(H2O)4·xH2O (M = Co and R = Et, Pr, or nBu, or M = Zn and R = Et); Phase B, M2(ROip)2(H2O) (M = Co or Zn and R = Et, Pr, nBu, or iBu, or M = Mn and R = nBu or iBu); Phase C, Zn3(EtOip)2(OH)2; and Phase D, Zn2(EtOip)2(H2O)3. Preliminary screening of the NO storage and release capabilities of the Co-containing materials is also reported.

[1]  M. Fröba,et al.  Tuning the nitric oxide release behavior of amino functionalized HKUST-1 , 2015 .

[2]  A. Slawin,et al.  Coordination polymers of Zn(II) and 5-methoxy isophthalate. , 2015, Dalton transactions.

[3]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[4]  S. Gao,et al.  Crystal structure of poly[(N,N-dimethylacetamide-κO)(μ4-5-methylisophthalato-κ5 O:O,O′:O′′:O′′′)manganese(II)] , 2015, Acta crystallographica. Section E, Crystallographic communications.

[5]  Cory M. Simon,et al.  Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks , 2014, Nature Communications.

[6]  Melissa M. Reynolds,et al.  Composite materials with embedded metal organic framework catalysts for nitric oxide release from bioavailable S-nitrosothiols. , 2014, Journal of materials chemistry. B.

[7]  Z. Fei,et al.  Synthesis, structures and photocatalytic properties of two new Co(II) coordination polymers based on 5-(benzyloxy)isophthalate ligand , 2014 .

[8]  Chao He,et al.  Reversible crystal-to-amorphous-to-crystal phase transition and a large magnetocaloric effect in a spongelike metal organic framework material. , 2014, Chemical communications.

[9]  J. Rocha,et al.  Microporous titanosilicates Cu2+- and Co2+-ETS-4 for storage and slow release of therapeutic nitric oxide. , 2014, Journal of materials chemistry. B.

[10]  S. Sakaki,et al.  Self-Accelerating CO Sorption in a Soft Nanoporous Crystal , 2014, Science.

[11]  D. Díaz,et al.  Hydrolytic conversion of a metal-organic polyhedron into a metal-organic framework. , 2013, Angewandte Chemie.

[12]  Abhijeet K. Chaudhari,et al.  Bi-porous metal–organic framework with hydrophilic and hydrophobic channels: selective gas sorption and reversible iodine uptake studies , 2013 .

[13]  Jaheon Kim,et al.  Poly[(μ3-5-tert-butylbenzene-1,3-dicarboxylato)dipyridinecobalt(II)] , 2013, Acta crystallographica. Section E, Structure reports online.

[14]  X. J. Xu,et al.  Hydrothermal synthesis, crystal structure, and luminescence of a novel tetranuclear zinc(ii) complex , 2013, Journal of Structural Chemistry.

[15]  Fausthon F. da Silva,et al.  Induction of cancer cell death by apoptosis and slow release of 5-fluoracil from metal-organic frameworks Cu-BTC. , 2013, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[16]  C. Serre,et al.  A rare example of a porous Ca-MOF for the controlled release of biologically active NO. , 2013, Chemical communications.

[17]  Qing‐Xiang Liu,et al.  Structural Diversity of Copper(II) Coordination Polymers Based on Tosylated Isophthalic Ligands , 2013 .

[18]  C. Tian,et al.  Three New Three-Dimensional Frameworks Based on Hepta-, Hexa-, and Pentanuclear Cobalt Clusters Derived from Substituted Isophthalic Acids: Synthesis, Structures, and Magnetic Properties , 2013 .

[19]  A. Dorazco‐González,et al.  Directed self-assembly of mono and dinuclear copper(II) isophthalates into 1D polymeric structures. Design and an unusual cocrystallization , 2013 .

[20]  Rong-bin Huang,et al.  Influential factors on assembly of first-row transition metal coordination polymers , 2013 .

[21]  Xiaohui Huang,et al.  A three-dimensional manganese(II) metal-organic framework based on 5-methoxybenzene-1,3-dicarboxylic acid and exhibiting a pts net. , 2013, Acta crystallographica. Section C, Crystal structure communications.

[22]  C. Serre,et al.  Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal–Organic Frameworks , 2013 .

[23]  L. Long,et al.  Fine tuning of the coordination environments and magnetic properties of first row transition metal ions with 5-methylisophthalate and 2,2 '-bipyridine/phenanthroline , 2013 .

[24]  Gisela Orcajo,et al.  Synthesis of a honeycomb-like Cu-based metal-organic framework and its carbon dioxide adsorption behaviour. , 2013, Dalton transactions.

[25]  Q. Bo,et al.  Synthesis, characterization and photoluminescent properties of Zn-based mono- and hetero-MOFs containing the R-isophthalate (R = methyl or tert-butyl) ligands , 2013 .

[26]  Q. Bo,et al.  Fluorescent Zn-based hetero-MOFs design via single metal site substitution , 2012 .

[27]  Shihui Li,et al.  Crystal structure of catena-monoaqua(5-tert-butylisophthalate)- cadmium(II)-[1,4-bis-(2-methyl-imidazol-1-yl)butane]-hydrate (1:1:2), [Cd(C12H13O4)(C12H12O4)(H2O)]·(C12H20N4)0.5·2H2O, C30H41CdN2O11 , 2012 .

[28]  C. Hu,et al.  A giant coordination cage based on sulfonylcalix[4]arenes. , 2012, Chemical communications.

[29]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[30]  Li Li,et al.  Spontaneously resolved 2D chiral kagomé Cu(II) coordination polymer , 2012 .

[31]  Xin Zhang,et al.  Tail of the Organic Ligand Templated Metal-Organic Framework , 2012, Journal of Inorganic and Organometallic Polymers and Materials.

[32]  R. Scopelliti,et al.  Dicarboxylate-bridged ruthenium complexes as building blocks for molecular nanostructures. , 2012, Inorganic chemistry.

[33]  P. Voort,et al.  Vanadium Analogues of Nonfunctionalized and Amino‐Functionalized MOFs with MIL‐101 Topology – Synthesis, Characterization, and Gas Sorption Properties , 2012 .

[34]  Zhengbo Han,et al.  Structural assemblies of four Cd(II) coordination polymers based on 5-methylisophthalic acid , 2012 .

[35]  H. Zhu,et al.  Synthesis and crystal structure of a 1D coordination polymer Cu3(Mip)4(2,2′-Bipy)2 (H2Mip = 5-methylisophthalic acid, 2,2′-Bipy = 2,2′-bipyridine) , 2012, Russian Journal of Coordination Chemistry.

[36]  Zhengbo Han,et al.  Ionothermal Synthesis of a NaCl-type Topological Network Based on Trinuclear Cobalt(II) Clusters as Nodes , 2012 .

[37]  L. Long,et al.  Effect of ionic radius on the assemblies of first row transition metal–5-tert-butylisophthalates–(2,2′-bipyridine or phenanthroline) coordination compounds , 2012 .

[38]  Hui-ju Zhang Crystal structure of catena-triaqua(5-methoxyisophthalate)- cadmium(II)—water (1:2), [Cd(C9H6O5)(H2O)3] · 2H2O , 2011 .

[39]  Rong-bin Huang,et al.  A tri-layer structure consisting of novel heptacobaltate clusters and single cobalt centers bridged by 5-tert-butyl isophthalate. , 2011, Dalton transactions.

[40]  Q. Bo,et al.  Structure and photoluminescence tuning features of Mn(2+)- and Ln(3+)-activated Zn-based heterometal-organic frameworks (MOFs) with a single 5-methylisophthalic acid ligand. , 2011, Inorganic chemistry.

[41]  Craig M. Brown,et al.  Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites. , 2011, Journal of the American Chemical Society.

[42]  C. Tian,et al.  Two new ferrimagnetic MnII-carboxylate coordination polymers constructed from 5-tert-butyl isophthalic acid with (5/2, 15/2) and (5/2, 10/2) spin topologies , 2011 .

[43]  A. Slawin,et al.  Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydrophobic metal-organic framework. , 2011, Nature chemistry.

[44]  Q. Bo,et al.  Novel metal–organic frameworks (MOFs) based on heterometallic nodes and 5-methylisophthalate linkers , 2011 .

[45]  D. Braga,et al.  Surprising robustness of a unit cell: isomorphism in caesium 18-crown[6] complexes with aromatic polycarboxylate anions , 2011 .

[46]  D. Volkmer,et al.  Comparative solvolytic stabilities of copper(II) nanoballs and dinuclear Cu(II) paddle wheel units , 2010 .

[47]  S. Ülkü,et al.  Antibacterial and bactericidal activity of nitric oxide-releasing natural zeolite , 2010 .

[48]  Xiangnan Sun,et al.  Crystal structure of N-(1,2-di(pyridin-2-yl)methyl)picolinamido-(isothiocyanato)nickle(II) sesquihydrate, Ni(NCS)(C12H10N3O) · 1.5H2O, a correction to the article “Crystal structure of 2-hydroxy-1,2-di(pyridin-2-yl)ethanone-(isothiocyanato)nickel(II) sesquihydrate, Ni(NCS)(C12H10N2O2) · 1.5H2O”, Z. , 2010 .

[49]  S. Du,et al.  Syntheses, topological analyses, and NLO-active properties of new Cd(II)/M(II) (M = Ca, Sr) metal-organic frameworks based on R-isophthalic acids (R = H, OH, and t-Bu). , 2010, Dalton transactions.

[50]  Hong-Cai Zhou,et al.  Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. , 2010, Nature chemistry.

[51]  Avelino Corma,et al.  Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. , 2010, Chemistry.

[52]  Seth M. Cohen,et al.  Postsynthetic diazeniumdiolate formation and NO release from MOFs , 2010 .

[53]  Mingyan Wu,et al.  Crystal Structures, Topological Analyses, and Magnetic Properties of Manganese-Dihydroxyterephthalate Complexes , 2010 .

[54]  X. Long,et al.  A Series of Cation-Templated, Polycarboxylate-Based Cd(II) or Cd(II)/Li(I) Frameworks with Second-Order Nonlinear Optical and Ferroelectric Properties , 2010 .

[55]  Zhaoxiong Xie,et al.  Substituent effect on the assembly of coordination polymers containing isophthalic acid and its derivatives , 2009 .

[56]  K. Balkus,et al.  Novel Delivery System for the Bioregulatory Agent Nitric Oxide , 2009 .

[57]  Su-Mei Shen,et al.  catena-Poly[[[aqua(2,2′-bipyridine)manganese(II)]-μ-5-methoxyisophthalato-κ3 O,O′:O′′] monohydrate] , 2009, Acta crystallographica. Section E, Structure reports online.

[58]  H. Hou,et al.  Tetranuclear and One‐dimensional Cobalt Complexes with 5‐tert‐Butyl Isophthalic Acid and Chelating Neutral Ligands , 2009 .

[59]  L. Long,et al.  Ionothermal synthesis of 3d–4f and 4f layered anionic metal–organic frameworks , 2009 .

[60]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[61]  S. Batten,et al.  Structural Variation from 1D to 3D: Effects of Temperature and pH Value on the Construction of Co(II)-H2tbip/bpp Mixed Ligands System , 2009 .

[62]  H. Chun,et al.  Targeted synthesis of a prototype MOF based on Zn4(O)(O2C)6 units and a nonlinear dicarboxylate ligand. , 2009, Inorganic chemistry.

[63]  Zhao-Lian Yu,et al.  catena-Poly[[(1,10-phenanthroline)manganese(II)]-μ3-5-methylisophthalato] , 2008, Acta crystallographica. Section E, Structure reports online.

[64]  Xiao-Ling Li,et al.  catena-Poly[[(2,2′-bipyridine)copper(II)]-μ-5-tert-butylisophthalato] , 2008, Acta crystallographica. Section E, Structure reports online.

[65]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[66]  Richard Blom,et al.  Base‐Induced Formation of Two Magnesium Metal‐Organic Framework Compounds with a Bifunctional Tetratopic Ligand , 2008 .

[67]  Alistair C. McKinlay,et al.  Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. , 2008, Journal of the American Chemical Society.

[68]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[69]  R. Weller,et al.  Topically applied nitric oxide induces T-lymphocyte infiltration in human skin, but minimal inflammation. , 2008, The Journal of investigative dermatology.

[70]  C. Serre,et al.  Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. , 2007, Chemical communications.

[71]  Hiroaki Sakurai,et al.  Probing the Lewis acid sites and CO catalytic oxidation activity of the porous metal-organic polymer [Cu(5-methylisophthalate)]. , 2007, Journal of the American Chemical Society.

[72]  M. R. Miller,et al.  Recent developments in nitric oxide donor drugs , 2007, British journal of pharmacology.

[73]  Hong‐Cai Zhou,et al.  A mesh-adjustable molecular sieve for general use in gas separation. , 2007, Angewandte Chemie.

[74]  A. Fletcher,et al.  High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. , 2007, Journal of the American Chemical Society.

[75]  F. Murad,et al.  Nitric Oxide Accelerates the Recovery from Burn Wounds , 2007, World Journal of Surgery.

[76]  D. Olson,et al.  Zn(tbip) (H2tbip= 5-tert-butyl isophthalic acid): a highly stable guest-free microporous metal organic framework with unique gas separation capability. , 2006, Journal of the American Chemical Society.

[77]  M. Hirscher,et al.  Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. , 2006, Chemical communications.

[78]  P. Wheatley,et al.  NO-releasing zeolites and their antithrombotic properties. , 2006, Journal of the American Chemical Society.

[79]  H. Fjellvåg,et al.  An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. , 2005, Angewandte Chemie.

[80]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[81]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[82]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.

[83]  M. Zaworotko,et al.  Sextuplet phenyl embrace in a metal-organic Kagomé lattice. , 2004, Chemical communications.

[84]  Guanghua Li,et al.  Mixed solvothermal synthesis and X-ray characterization of a layered copper coordination polymer, Cu(H2O)(1,3-BDC) · H2O (BDC=benzenedicarboxylate) , 2003 .

[85]  M. Zaworotko,et al.  Coordination Polymers from Calixarene-Like [Cu2(Dicarboxylate)2]4 Building Blocks: Structural Diversity via Atropisomerism , 2003 .

[86]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[87]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[88]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[89]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[90]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[91]  R. H. Pratt,et al.  Corrections to tabulated anomalous-scattering factors , 1990 .

[92]  A. Linden Chemistry and structure in Acta Crystallographica Section C. , 2015, Acta crystallographica. Section C, Structural chemistry.

[93]  Liya Wang,et al.  Exploring the structural diversities and magnetic properties of copper(II) and manganese(II) complexes based on 5-methoxyisophthalate and flexible bis(imidazole) ligands , 2014 .

[94]  T. Verbiest,et al.  Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs , 2013 .

[95]  W. Marsden I and J , 2012 .

[96]  Bo,et al.  Syntheses and Crystal Structures of One-dimensional Ni(II) Complexes with 5-Tert-butyl Isophthalic Acid , 2009 .

[97]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[98]  P. Wheatley,et al.  The adsorption, storage and release of nitric oxide using ion exchanged zeolites , 2007 .

[99]  Gisela Orcajo,et al.  Journal and Proceedings of the Royal Institute of Chemistry of Great Britain and Ireland. Part 5. 1947 , 1947 .