Adsorption and migration of Cs and Na ions in geopolymers and zeolites

[1]  Rehab O. Abdel Rahman,et al.  On the Sustainable Utilization of Geopolymers for Safe Management of Radioactive Waste: A Review , 2023, Sustainability.

[2]  H. Jeong,et al.  Thermal stabilization of extraframework Cs+ in zeolite 13X , 2022, Journal of Nuclear Materials.

[3]  Zhihua Yang,et al.  Additive manufacturing of geopolymers with hierarchical porosity for highly efficient removal of Cs. , 2022, Journal of hazardous materials.

[4]  Quanzhi Tian,et al.  Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review , 2022, Molecules.

[5]  N. Banthia,et al.  Leaching of immobilized cesium from NaOH-activated fly ash-based geopolymers , 2022, Cement and Concrete Composites.

[6]  H. Manzano,et al.  A comprehensive review of C-S-H empirical and computational models, their applications, and practical aspects , 2022, Cement and Concrete Research.

[7]  C. Shi,et al.  Advances in immobilization of radionuclide wastes by alkali activated cement and related materials , 2022, Cement and Concrete Composites.

[8]  Concrete needs to lose its colossal carbon footprint , 2021, Nature.

[9]  K. Kurtis,et al.  Early age volume changes in metakaolin geopolymers: Insights from molecular simulations and experiments , 2021, Cement and Concrete Research.

[10]  Yu Zhou,et al.  Hydrothermal transformation of geopolymers to bulk zeolite structures for efficient hazardous elements adsorption. , 2021, The Science of the total environment.

[11]  P. T. Almazán-Sánchez,et al.  Radioactive waste treatments by using zeolites. A short review. , 2021, Journal of environmental radioactivity.

[12]  H. Manzano,et al.  Microscopic mechanism of radionuclide Cs retention in Al containing C-S-H nanopores , 2021 .

[13]  K. Irshad,et al.  Removal of Cs+ and Sr2+ ions from simulated radioactive waste solutions using Zeolite-A synthesized from kaolin and their structural stability at high pressures , 2020 .

[14]  Chaehoon Kim,et al.  Relationship between zeolite structure and capture capability for radioactive cesium and strontium. , 2020, Journal of hazardous materials.

[15]  Zhihua Yang,et al.  Hydrothermal synthesis of pollucite from metakaolin-based geopolymer for hazardous wastes storage , 2020 .

[16]  K. Sasaki,et al.  Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios. , 2019, The Science of the total environment.

[17]  Sefiu Abolaji Rasaki,et al.  Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: A critical review , 2019, Journal of Cleaner Production.

[18]  A. V. van Duin,et al.  Development of the ReaxFF Methodology for Electrolyte-Water Systems. , 2019, The journal of physical chemistry. A.

[19]  Minkee Choi,et al.  Synergy between Zeolite Framework and Encapsulated Sulfur for Enhanced Ion-Exchange Selectivity to Radioactive Cesium , 2018, Chemistry of Materials.

[20]  Maria Chiara Bignozzi,et al.  Atomistic Simulations of Geopolymer Models: The Impact of Disorder on Structure and Mechanics. , 2018, ACS applied materials & interfaces.

[21]  H. Manzano,et al.  Cs-137 immobilization in C-S-H gel nanopores. , 2018, Physical chemistry chemical physics : PCCP.

[22]  Hae-Kwon Jeong,et al.  Selective Removal of Radioactive Cesium from Nuclear Waste by Zeolites: On the Origin of Cesium Selectivity Revealed by Systematic Crystallographic Studies , 2017 .

[23]  S. M. Park,et al.  Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. , 2016, Journal of hazardous materials.

[24]  Shuai Fu,et al.  Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer , 2016 .

[25]  C. Grecu,et al.  Reduced hydrogen diffusion in strained amorphous SiO2: understanding ageing in MOSFET devices , 2016 .

[26]  Arpad Horvath,et al.  Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20% , 2016 .

[27]  J. Provis,et al.  Advances in understanding alkali-activated materials , 2015 .

[28]  J. Bensted,et al.  Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin , 2015 .

[29]  R. Thomas,et al.  Alkali-activated concrete: Engineering properties and stress–strain behavior , 2015 .

[30]  Ping Duan,et al.  Thermal Behavior of Portland Cement and Fly Ash–Metakaolin-Based Geopolymer Cement Pastes , 2015 .

[31]  Bhupinder Singh,et al.  Geopolymer concrete: A review of some recent developments , 2015 .

[32]  A. V. van Duin,et al.  Reactive molecular simulations of protonation of water clusters and depletion of acidity in H-ZSM-5 zeolite. , 2014, Physical chemistry chemical physics : PCCP.

[33]  Nataša Marjanović,et al.  Lead immobilization by geopolymers based on mechanically activated fly ash , 2014 .

[34]  Shin'ichi Suzuki,et al.  Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents , 2014 .

[35]  Mohd Warid Hussin,et al.  Sulfuric acid resistance of blended ash geopolymer concrete , 2013 .

[36]  J. Sussman,et al.  JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia , 2013 .

[37]  Kaushik L Joshi,et al.  Molecular Dynamics Study on the Influence of Additives on the High-Temperature Structural and Acidic Properties of ZSM-5 Zeolite , 2013 .

[38]  N. Henson,et al.  In situ synchrotron X-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers , 2013 .

[39]  Hiroki Nakamura,et al.  First-Principles Calculation Study of Mechanism of Cation Adsorption Selectivity of Zeolites : A Guideline for Effective Removal of Radioactive Cesium , 2013 .

[40]  Christopher R. Cheeseman,et al.  Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers , 2012 .

[41]  P. Chindaprasirt,et al.  Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack , 2012 .

[42]  Joel Davis,et al.  Immobilization of Cs and Sr in Geopolymers with Si/Al Molar Ratio of∼2 , 2012 .

[43]  B. Roux,et al.  The Solvation Structure of Na(+) and K(+) in Liquid Water Determined from High Level ab Initio Molecular Dynamics Simulations. , 2012, Journal of chemical theory and computation.

[44]  Ingmar Persson,et al.  A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution , 2011, Inorganic chemistry.

[45]  Adri C. T. van Duin,et al.  Atomistic-scale simulations of chemical reactions: Bridging from quantum chemistry to engineering , 2011 .

[46]  Hugo Marcelo Veit,et al.  The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers , 2011 .

[47]  G. Escadeillas,et al.  Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects , 2010 .

[48]  Ursula Rothlisberger,et al.  Coordination numbers of K(+) and Na(+) Ions inside the selectivity filter of the KcsA potassium channel: insights from first principles molecular dynamics. , 2010, Biophysical journal.

[49]  Joseph C. Fogarty,et al.  A reactive molecular dynamics simulation of the silica-water interface. , 2010, The Journal of chemical physics.

[50]  E. Borai,et al.  Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. , 2009, Journal of hazardous materials.

[51]  L. Pusztai,et al.  Understanding the structure of aqueous cesium chloride solutions by combining diffraction experiments, molecular dynamics simulations, and reverse Monte Carlo modeling. , 2009, The journal of physical chemistry. B.

[52]  Ming-Hsu Li,et al.  Removal of cesium ions from aqueous solution by adsorption onto local Taiwan laterite. , 2008, Journal of hazardous materials.

[53]  A. M. El-kamash,et al.  Examination of the use of synthetic Zeolite NaA–X blend as backfill material in a radioactive waste disposal facility: Thermodynamic approach , 2008 .

[54]  J. Deventer,et al.  Geopolymerisation kinetics. 3. Effects of Cs and Sr salts , 2008 .

[55]  Tarun R. Naik,et al.  Sustainability of Concrete Construction , 2008 .

[56]  S. Churakov,et al.  Diffusion of Na and Cs in montmorillonite , 2008 .

[57]  Á. Palomo,et al.  Alkaline activation of metakaolin–fly ash mixtures: Obtain of Zeoceramics and Zeocements , 2008 .

[58]  T. Nenoff,et al.  Molecular dynamics studies of nanoconfined water in clinoptilolite and heulandite zeolites. , 2008, Physical chemistry chemical physics : PCCP.

[59]  J. Leszczynski,et al.  Cesium cation complexation by 25,27-dihydroxycalix[4]arene-crown-6: Computational study , 2007 .

[60]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[61]  V. Sirivivatnanon,et al.  Kinetics of geopolymerization: Role of Al2O3 and SiO2 , 2007 .

[62]  Grant C. Lukey,et al.  Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C , 2007 .

[63]  Caijun Shi,et al.  Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. , 2006, Journal of hazardous materials.

[64]  Ángel Palomo,et al.  Immobilization of cesium in alkaline activated fly ash matrix , 2005 .

[65]  Catherine L. Nicholson,et al.  The composition range of aluminosilicate geopolymers , 2005 .

[66]  T. Bakharev,et al.  Durability of Geopolymer Materials in Sodium and Magnesium Sulfate Solutions , 2005 .

[67]  E. Erdem,et al.  The removal of heavy metal cations by natural zeolites. , 2004, Journal of colloid and interface science.

[68]  Jonathan L. Bell,et al.  Geopolymers: Nanoparticulate, Nanoporous Ceramics Made Under Ambient Conditions , 2004, Microscopy and Microanalysis.

[69]  J. Dufrêche,et al.  Na/Cs montmorillonite: temperature activation of diffusion by simulation , 2004 .

[70]  Thomas S. Hofer,et al.  “Structure Breaking” Effect of Hydrated Cs+ , 2004 .

[71]  Hung T. Tran,et al.  Characterization of dynamics and reactivities of solvated ions by ab initio simulations , 2004, J. Comput. Chem..

[72]  Virginie Marry,et al.  Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites , 2003 .

[73]  Hua Xu,et al.  Geopolymerisation of multiple minerals , 2002 .

[74]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[75]  A. Manikandan,et al.  W- and X-Band Pulsed Electron Nuclear Double-Resonance Study of a Sodium−Nitric Oxide Adsorption Complex in NaA Zeolites , 2000 .

[76]  J.S.J. van Deventer,et al.  Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers , 1999 .

[77]  H. Ohashi,et al.  Diffusion mechanism of cesium ions in compacted montmorillonite , 1999 .

[78]  P. K. Sinha,et al.  Fixation of Caesium, Strontium and Thorium Ions in Commercial Synthetic Zeolite Matrices by Thermal Treatment , 1996 .

[79]  A. Masion,et al.  Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonites: 2. The Li+ Na+, K+, Rb+ and Cs+-Exchanged Forms , 1995 .

[80]  E. Merz,et al.  Immobilization of intermediate-level wastes in geopolymers , 1994 .

[81]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[82]  R. Kirkpatrick,et al.  Variations in interlayer cation sites of clay minerals as studied by 133 Cs MAS nuclear magnetic resonance spectroscopy , 1990 .

[83]  H. Mimura,et al.  Distribution and fixation of cesium and strontium in zeolite A and chabazite , 1985 .

[84]  L. Randaccio,et al.  Cation site location in hydrated chabazites. Crystal structure of potassium- and silver- exchanged chabazites☆ , 1983 .

[85]  M. Hafez,et al.  Fixation mechanism between zeolite and some radioactive elements , 1978 .

[86]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[87]  Li Yuan-hui,et al.  Diffusion of ions in sea water and in deep-sea sediments , 1974 .

[88]  W. M. Meier,et al.  The crystal structure of mordenite (ptilolite) , 1961 .

[89]  J. Smith,et al.  Crystal Structure of Chabazite, a Molecular Sieve , 1958, Nature.

[90]  Toshio Yamada,et al.  Natural Zeolites as Potential Materials for Decontamination of Radioactive Cesium , 2015 .

[91]  R. K. Pathria,et al.  16 – Computer Simulations , 2011 .

[92]  Ilija Plecas,et al.  Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia , 2009 .

[93]  P. K. Sinha,et al.  Treatment of radioactive liquid waste containing caesium by indigenously available synthetic zeolites: A comparative study , 1995 .

[94]  R. Harjula,et al.  Effect of sodium and potassium ions on cesium absorption from nuclear power plant waste solutions on synthetic zeolites , 1986 .

[95]  Y. Takéuchi,et al.  Clinoptilolite: the distribution of potassium atoms and its role in thermal stability , 1977 .

[96]  A. V. Kiselev,et al.  Heats of adsorption of water vapour on X-zeolites containing Li+, Na+, K+, Rb+, and Cs+ cations , 1971 .