Generalized Survival Probability

Survival probability measures the probability that a system taken out of equilibrium has not yet transitioned from its initial state. Inspired by the generalized entropies used to analyze nonergodic states, we introduce a generalized version of the survival probability and discuss how it can assist in studies of the structure of eigenstates and ergodicity.

[1]  H. Sadeghpour,et al.  Many-body quantum chaos in stroboscopically-driven cold atoms , 2022, Communications Physics.

[2]  L. F. Santos,et al.  Identification of quantum scars via phase-space localization measures , 2021, Quantum.

[3]  L. F. Santos,et al.  Equilibration time in many-body quantum systems , 2021, Physical Review B.

[4]  L. F. Santos,et al.  Multifractality and self-averaging at the many-body localization transition , 2021, Physical Review Research.

[5]  L. F. Santos,et al.  Speck of chaos , 2020, 2006.10779.

[6]  L. F. Santos,et al.  Dynamical signatures of quantum chaos and relaxation time scales in a spin-boson system. , 2019, Physical review. E.

[7]  F. Alet,et al.  Multifractal Scalings Across the Many-Body Localization Transition. , 2018, Physical review letters.

[8]  S. Das Sarma,et al.  Observation of Many-Body Localization in a One-Dimensional System with a Single-Particle Mobility Edge. , 2018, Physical review letters.

[9]  L. F. Santos,et al.  Thouless and relaxation time scales in many-body quantum systems , 2018, Physical Review B.

[10]  L. F. Santos,et al.  Signatures of chaos and thermalization in the dynamics of many-body quantum systems , 2018, The European Physical Journal Special Topics.

[11]  L. F. Santos,et al.  Analytical expressions for the evolution of many-body quantum systems quenched far from equilibrium , 2017 .

[12]  L. F. Santos,et al.  Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator , 2017, 1704.06272.

[13]  Lea F. Santos,et al.  Dynamical manifestations of quantum chaos: correlation hole and bulge , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  L. F. Santos,et al.  Power-law decay exponents: A dynamical criterion for predicting thermalization , 2016, 1610.04240.

[15]  L. F. Santos,et al.  Extended nonergodic states in disordered many‐body quantum systems , 2016, 1610.02035.

[16]  Lea F. Santos,et al.  Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties , 2016, Entropy.

[17]  L. F. Santos,et al.  Quantum Chaos and Thermalization in Isolated Systems of Interacting Particles , 2016, 1602.01874.

[18]  Lea F. Santos,et al.  Inevitable power-law behavior of isolated many-body quantum systems and how it anticipates thermalization , 2016, 1601.05807.

[19]  L. F. Santos,et al.  Survival Probability of the Néel State in Clean and Disordered Systems: An Overview , 2015, 1506.08904.

[20]  Xiaopeng Li,et al.  Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge. , 2015, Physical review letters.

[21]  L. F. Santos,et al.  Dynamics at the Many-Body Localization Transition , 2015, 1501.05662.

[22]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[23]  G. Crooks On Measures of Entropy and Information , 2015 .

[24]  Lea F. Santos,et al.  Nonexponential fidelity decay in isolated interacting quantum systems , 2014, 1407.4816.

[25]  Lea F. Santos,et al.  General features of the relaxation dynamics of interacting quantum systems , 2014, 1402.3299.

[26]  F. Alet,et al.  Universal behavior beyond multifractality in quantum many-body systems. , 2013, Physical review letters.

[27]  E. Bogomolny,et al.  Calculation of multi-fractal dimensions in spin chains , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  T. Seligman,et al.  Fidelity under isospectral perturbations: a random matrix study , 2013 .

[29]  E. Bogomolny,et al.  Distribution of the ratio of consecutive level spacings in random matrix ensembles. , 2012, Physical review letters.

[30]  A. Scardicchio,et al.  Ergodicity breaking in a model showing many-body localization , 2012, 1206.2342.

[31]  L. F. Santos,et al.  Chaos and statistical relaxation in quantum systems of interacting particles. , 2012, Physical review letters.

[32]  L. F. Santos,et al.  Onset of chaos and relaxation in isolated systems of interacting spins: energy shell approach. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  L. F. Santos,et al.  Interplay between interaction and (un)correlated disorder in one-dimensional many-particle systems: delocalization and global entanglement , 2008, 0810.4560.

[34]  K. Urbanowski General properties of the evolution of unstable states at long times , 2008, 0803.3188.

[35]  A. Mirlin,et al.  Anderson Transitions , 2007, 0707.4378.

[36]  V. Kota,et al.  Bivariate-t distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems , 2005, nlin/0508023.

[37]  Y. Fyodorov,et al.  Fano interference and cross-section fluctuations in molecular photodissociation , 2003, cond-mat/0309521.

[38]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[39]  M. Dykman,et al.  Strong many-particle localization and quantum computing with perpetually coupled qubits , 2004, quant-ph/0405013.

[40]  V. Kota,et al.  Strength functions for interacting bosons in a mean-field with random two-body interactions , 2004 .

[41]  L. Khalfin,et al.  On the Uncertainty Relation between Time and Energy , 2004 .

[42]  D. Angom,et al.  Strength functions, entropies, and duality in weakly to strongly interacting fermionic systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  T. Prosen,et al.  A random matrix formulation of fidelity decay , 2003, nlin/0311022.

[44]  V. Flambaum,et al.  Entropy production and wave packet dynamics in the Fock space of closed chaotic many-body systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  V. Flambaum,et al.  Unconventional decay law for excited states in closed many-body systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  V. Kota,et al.  Structure of wave functions in (1+2)-body random matrix ensembles. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  V. Flambaum Time Dynamics in Chaotic Many-body Systems: Can Chaos Destroy a Quantum Computer? , 1999, quant-ph/9911061.

[48]  J. Pique,et al.  Influence of Experimental Resolution on the Spectral Statistics Used to Show Quantum Chaos: The Case of Molecular Vibrational Chaos , 1999 .

[49]  R. Klesse,et al.  Wave-packet dynamics at the mobility edge in two- and three-dimensional systems , 1998, cond-mat/9805038.

[50]  F.M.Izrailev,et al.  Excited Eigenstates and Strength Functions for Isolated Systems of Interacting Particles , 1998, cond-mat/9812417.

[51]  F.M.Izrailev,et al.  Chaos and Thermalization in a Dynamical Model of Two Interacting Particles , 1997, chao-dyn/9711005.

[52]  V. Flambaum,et al.  Statistical theory of finite Fermi systems based on the structure of chaotic eigenstates , 1997, cond-mat/9707016.

[53]  B. Chirikov,et al.  Quantum ergodicity and localization in conservative systems: the Wigner band random matrix model , 1996 .

[54]  B. A. Brown,et al.  THE NUCLEAR SHELL MODEL AS A TESTING GROUND FOR MANY-BODY QUANTUM CHAOS , 1996 .

[55]  Brown,et al.  Strength functions and spreading widths of simple shell model configurations. , 1996, Physical review. C, Nuclear physics.

[56]  Izrailev,et al.  Towards a statistical theory of finite Fermi systems and compound states: Random two-body interaction approach. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  Izrailev,et al.  Correlations within eigenvectors and transition amplitudes in the two-body random interaction model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  Izrailev,et al.  Wigner random banded matrices with sparse structure: Local spectral density of states. , 1996, Physical review letters.

[59]  Kozlov,et al.  Structure of compound states in the chaotic spectrum of the Ce atom: Localization properties, matrix elements, and enhancement of weak perturbations. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[60]  C. Lewenkopf,et al.  Single and multiple giant resonances: Counterplay of collective and chaotic dynamics , 1994 .

[61]  C. Bertulani,et al.  Excitation of multiphonon giant resonance states in relativistic heavy-ion collisions , 1994 .

[62]  Schweitzer,et al.  Relation between the correlation dimensions of multifractal wave functions and spectral measures in integer quantum Hall systems. , 1994, Physical review letters.

[63]  Seligman,et al.  Universal and nonuniversal statistical properties of levels and intensities for chaotic Rydberg molecules. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[64]  Levine,et al.  Spectral autocorrelation function in the statistical theory of energy levels. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[65]  Geisel,et al.  Slow decay of temporal correlations in quantum systems with Cantor spectra. , 1992, Physical review letters.

[66]  H. Weidenmuller,et al.  Correlations in anticrossing spectra and scattering theory: Numerical simulations , 1991 .

[67]  H. Weidenmuller,et al.  Correlations in anticrossing spectra and scattering theory. Analytical aspects , 1990 .

[68]  Chen,et al.  Chaos and dynamics on 0.5-300 ps time scales in vibrationally excited acetylene: Fourier transform of stimulated-emission pumping spectrum. , 1987, Physical review letters.

[69]  Jost,et al.  Fourier transform: A tool to measure statistical level properties in very complex spectra. , 1986, Physical review letters.

[70]  Eleftherios N. Economou,et al.  Fractal Character of Eigenstates in Disordered Systems , 1984 .

[71]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[72]  Franz Wegner,et al.  Inverse participation ratio in 2+ε dimensions , 1980 .

[73]  G. Ghirardi,et al.  Decay theory of unstable quantum systems , 1978 .

[74]  Michael V Berry,et al.  Regular and irregular semiclassical wavefunctions , 1977 .

[75]  P. Knight Interaction Hamiltonians, spectral lineshapes and deviations from the exponential decay law at long times , 1977 .

[76]  G. N. Fleming A unitarity bound on the evolution of nonstationary states , 1973 .

[77]  S.S.M. Wong,et al.  Validity of random matrix theories for many-particle systems , 1970 .

[78]  J. Jersak NUMBER OF WAVE FUNCTIONS OF UNSTABLE PARTICLE. , 1969 .

[79]  Z. Chyliński UNCERTAINTY RELATION BETWEEN TIME AND ENERGY , 1965 .

[80]  L. Khalfin,et al.  CONTRIBUTION TO THE DECAY THEORY OF A QUASI-STATIONARY STATE , 1958 .

[81]  A. Erdélyi Asymptotic Expansions of Fourier Integrals Involving Logarithmic Singularities , 1956 .

[82]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.