Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying

This paper presents an overview of single-pass interferometric Synthetic Aperture Radar (SAR) missions employing two or more satellites flying in a close formation. The simultaneous reception of the scattered radar echoes from different viewing directions by multiple spatially distributed antennas enables the acquisition of unique Earth observation products for environmental and climate monitoring. After a short introduction to the basic principles and applications of SAR interferometry, designs for the twin satellite missions TanDEM-X and Tandem-L are presented. The primary objective of TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is the generation of a global Digital Elevation Model (DEM) with unprecedented accuracy as the basis for a wide range of scientific research as well as for commercial DEM production. This goal is achieved by enhancing the TerraSAR-X mission with a second TerraSAR-X like satellite that will be launched in spring 2010. Both satellites act then as a large single-pass SAR interferometer with the opportunity for flexible baseline selection. Building upon the experience gathered with the TanDEM-X mission design, the fully polarimetric L-band twin satellite formation Tandem-L is proposed. Important objectives of this highly capable interferometric SAR mission are the global acquisition of three-dimensional forest structure and biomass inventories, large-scale measurements of millimetric displacements due to tectonic shifts, and systematic observations of glacier movements. The sophisticated mission concept and the high data-acquisition capacity of Tandem-L will moreover provide a unique data source to systematically observe, analyze, and quantify the dynamics of a wide range of additional processes in the bio-, litho-, hydro-, and cryosphere. By this, Tandem-L will be an essential step to advance our understanding of the Earth system and its intricate dynamics. Enabling technologies and techniques are described in detail. An outlook on future interferometric and tomographic concepts and developments, including multistatic SAR systems with multiple receivers, is provided.

[1]  G. Krieger,et al.  SweepSAR: Beam-forming on receive using a reflector-phased array feed combination for spaceborne SAR , 2009, 2009 IEEE Radar Conference.

[2]  Gerhard Krieger,et al.  Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[3]  W. Marsden I and J , 2012 .

[4]  R. Goldstein,et al.  Mapping small elevation changes over large areas: Differential radar interferometry , 1989 .

[5]  Josef Mittermayer,et al.  Conceptual studies for exploiting the TerraSAR-X dual receive antenna , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[6]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[7]  G. Krieger,et al.  The tandem-L mission proposal: Monitoring earth's dynamics with high resolution SAR interferometry , 2009, 2009 IEEE Radar Conference.

[8]  Charles Elachi,et al.  Spaceborne Radar Remote Sensing: Applications and Techniques , 1987 .

[9]  R. Goldstein,et al.  Interferometric radar measurement of ocean surface currents , 1987, Nature.

[10]  Stefano Tebaldini,et al.  Hybrid CramÉr–Rao Bounds for Crustal Displacement Field Estimators in SAR Interferometry , 2007, IEEE Signal Processing Letters.

[11]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[12]  G. Krieger,et al.  Impact of oscillator noise in bistatic and multistatic SAR , 2006, IEEE Geosci. Remote. Sens. Lett..

[13]  Gerhard Krieger,et al.  Multistatic sar satellite formations: potentials and challenges , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[14]  Michael Eineder,et al.  Current measurements by SAR along-track interferometry from a Space Shuttle , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[15]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[16]  R. Goldstein,et al.  Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream , 1993, Science.

[17]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[18]  L. C. Graham,et al.  Synthetic interferometer radar for topographic mapping , 1974 .

[19]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995 .

[20]  Howard A. Zebker,et al.  Mapping the world's topography using radar interferometry: the TOPSAT mission , 1994, Proc. IEEE.

[21]  J. L. van Genderen,et al.  SAR interferometry : issues, techniques, applications , 1996 .

[22]  K. Jon Ranson,et al.  Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[23]  Michael Eineder,et al.  Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems , 2005, IEEE Geoscience and Remote Sensing Letters.

[24]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[25]  F. Gini,et al.  Layover solution in multibaseline SAR interferometry , 2002 .

[26]  Sigurd Huber,et al.  Performance Comparison of Reflector- and Planar-Antenna Based Digital Beam-Forming SAR , 2009 .

[27]  Alberto Moreira,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 2000, IEEE Trans. Geosci. Remote. Sens..

[28]  Gerhard Krieger,et al.  Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts , 2005, EURASIP J. Adv. Signal Process..

[29]  Konstantinos Papathanassiou,et al.  Frequency Effects in Pol-InSAR Forest Height Estimation , 2006 .

[30]  G. Krieger,et al.  Advanced synthetic aperture radar based on digital beamforming and waveform diversity , 2008, 2008 IEEE Radar Conference.

[31]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[32]  John Homer,et al.  High resolution 3-D SAR via multi-baseline interferometry , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[33]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[34]  Gianfranco Fornaro,et al.  Three-dimensional multipass SAR focusing: experiments with long-term spaceborne data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  F. Rocca,et al.  SAR interferometry experiments with ERS-1 , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[38]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[39]  P. Rosen,et al.  On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[40]  Marian Werner,et al.  Shuttle Radar Topography Mission (SRTM) Mission Overview , 2001 .

[41]  Fulvio Gini,et al.  Reflectivity estimation for multibaseline interferometric radar imaging of layover extended sources , 2003, IEEE Trans. Signal Process..

[42]  Didier Massonnet,et al.  Capabilities and limitations of the interferometric cartwheel , 2001, IEEE Trans. Geosci. Remote. Sens..

[43]  Didier Massonnet,et al.  Land subsidence caused by the East Mesa Geothermal Field, California, observed using SAR interferometry , 1997 .

[44]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[45]  Michael Eineder,et al.  Traffic monitoring using SRTM along-track interferometry , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[46]  S. Cloude Polarization coherence tomography , 2006 .

[47]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[48]  Irena Hajnsek,et al.  Height Estimation of Boreal Forest: Interferometric Model-Based Inversion at L- and X-Band Versus HUTSCAT Profiling Scatterometer , 2007, IEEE Geoscience and Remote Sensing Letters.

[49]  Urs Wegmüller,et al.  Retrieval of vegetation parameters with SAR interferometry , 1997, IEEE Trans. Geosci. Remote. Sens..

[50]  F. Henderson,et al.  Principles and Applications of Imaging Radar , 1998 .

[51]  Fabio Rocca,et al.  The wavenumber shift in SAR interferometry , 1994, IEEE Trans. Geosci. Remote. Sens..

[52]  Rolf Werninghaus,et al.  The TerraSAR-X Mission and System Design , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[53]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[54]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[55]  Shane Cloude Dual-Baseline Coherence Tomography , 2007, IEEE Geoscience and Remote Sensing Letters.

[56]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[57]  Jan Askne,et al.  Potential of interferometric SAR for classification of land surfaces , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[58]  Gerhard Krieger,et al.  Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling , 2004, IEEE Geoscience and Remote Sensing Letters.

[59]  Helko Breit,et al.  TerraSAR-X technologies and first results , 2006 .

[60]  A. Laurence Gray,et al.  Repeat-pass interferometry with airborne synthetic aperture radar , 1993, IEEE Trans. Geosci. Remote. Sens..

[61]  Konstantinos Papathanassiou,et al.  Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Charles Werner,et al.  On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake , 1994 .

[63]  Gerhard Krieger,et al.  Spaceborne Interferometric and Multistatic SAR Systems , 2008 .

[64]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[65]  G. Krieger,et al.  Spaceborne bi- and multistatic SAR: potential and challenges , 2006 .

[66]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[67]  Alberto Moreira,et al.  Estimation of the Minimum Number of Tracks for SAR Tomography , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[68]  T. Barnett,et al.  Remote Sensing of Ocean Currents , 1989, Science.

[69]  Irena Hajnsek,et al.  Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[70]  Urs Wegmüller,et al.  SAR interferometric signatures of forest , 1995, IEEE Trans. Geosci. Remote. Sens..

[71]  A. Roth,et al.  The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar , 2003 .

[72]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[73]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .

[74]  Søren Nørvang Madsen,et al.  Imaging Radar Interferometry , 1994 .

[75]  J. Askne,et al.  SAR interferometry over Baltic Sea ice , 1998 .

[76]  Richard M. Goldstein,et al.  Studies of multibaseline spaceborne interferometric synthetic aperture radars , 1990 .

[77]  R. Goldstein,et al.  Crossed orbit interferometry: theory and experimental results from SIR-B , 1988 .

[78]  A. Beaudoin,et al.  An airborne synthetic aperture radar (SAR) experiment to support RADARSAT-2 ground moving target indication (GMTI) , 2002 .

[79]  Søren Nørvang Madsen,et al.  Automated Absolute Phase Retrieval in Across-Track Interferometry , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[80]  G. Krieger,et al.  ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets , 2006 .

[81]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[82]  Irena Hajnsek,et al.  TanDEM−X: Mission and Science Exploration , 2007 .

[83]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[84]  R. Goldstein,et al.  Topographic mapping from interferometric synthetic aperture radar observations , 1986 .

[85]  Gerhard Krieger,et al.  TANDEM-L: MONITORING THE EARTH'S DYNAMICS WITH INSAR AND POL-INSAR , 2009 .

[86]  Gerhard Krieger,et al.  Airborne Bistatic Synthetic Aperture Radar , 2008 .

[87]  Richard E. Carande,et al.  Estimating ocean coherence time using dual-baseline interferometric synthetic aperture radar , 1994, IEEE Trans. Geosci. Remote. Sens..

[88]  Gerhard Krieger,et al.  Performance prediction of a phase synchronization link for bistatic SAR , 2006, IEEE Geoscience and Remote Sensing Letters.

[89]  L. Wood,et al.  From the Authors , 2003, European Respiratory Journal.

[90]  A. Moccia,et al.  Spaceborne bistatic Synthetic Aperture Radar for remote sensing applications , 2000 .

[91]  D. Massonnet,et al.  Deflation of Mount Etna monitored by spaceborne radar interferometry , 1995, Nature.

[92]  Antonio Moccia,et al.  A tethered interferometric synthetic aperture radar (SAR) for a topographic mission , 1992, IEEE Trans. Geosci. Remote. Sens..