On Non-homogeneous Generalized Linear Discrete Time Systems

In this article, we study the initial value problem of a class of non-homogeneous generalized linear discrete time systems whose coefficients are square constant matrices. By using matrix pencil theory we obtain formulas for the solutions and we give necessary and sufficient conditions for existence and uniqueness of solutions. Moreover, we provide some numerical examples.

[1]  F. R. Gantmakher The Theory of Matrices , 1984 .

[2]  Ioannis G. Stratis,et al.  On Generalized Linear Regular Delay Systems , 1999 .

[3]  Jerzy Klamka,et al.  Controllability of nonlinear discrete systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[4]  Grigorios I. Kalogeropoulos,et al.  A compound matrix algorithm for the computation of the Smith form of a polynomial matrix , 2005, Numerical Algorithms.

[5]  Nguyen Khoa Son,et al.  Stability radii of higher order positive di erence systems , 2003 .

[6]  Jerzy Klamka,et al.  Controllability and Minimum Energy Control Problem of Fractional Discrete-Time Systems , 2010 .

[7]  Athanasios A. Pantelous,et al.  Linear Time Invariant Homogeneous Matrix Descriptor (Singular) Discrete-Time Systems with Non Consistent Initial Conditions , 2010, 2010 Sixth International Conference on Networking and Services.

[8]  Roy M. Howard,et al.  Linear System Theory , 1992 .

[9]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[10]  F. Lewis A survey of linear singular systems , 1986 .

[11]  Ioannis K. Dassios,et al.  On a boundary value problem of a class of generalized linear discrete-time systems , 2011 .

[12]  Alexander Tovbis,et al.  On formal solutions of linear matrix differential–difference equations , 2002 .

[13]  J. Klamka Controllability of dynamical systems , 1991, Mathematica Applicanda.

[14]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[15]  Ioannis Dassios,et al.  Solutions of Higher-Order Homogeneous Linear Matrix Differential Equations for Consistent and Non-Consistent Initial Conditions: Regular Case , 2011 .

[16]  N. Karcanias,et al.  On the computation of the Jordan canonical form of regular matrix polynomials , 2004 .

[17]  Stephen S.-T. Yau,et al.  More explicit formulas for the matrix exponential , 1997 .

[18]  Michael P. Hassell,et al.  The Spatial and Temporal Dynamics of Host-Parasitoid Interactions , 2000 .

[19]  N. Karcanias,et al.  Geometric theory and feedback invariants of generalized linear systems: A matrix pencil approach , 1989 .

[20]  Oded Galor,et al.  Discrete Dynamical Systems , 2005 .

[21]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[22]  S. Campbell Singular Systems of Differential Equations , 1980 .

[23]  E. Polak,et al.  System Theory , 1963 .

[24]  Ioannis K. Dassios,et al.  Perturbation and robust stability of autonomous singular linear matrix difference equations , 2012, Appl. Math. Comput..

[25]  G. Kalogeropoulos,et al.  A matrix-pencil-based interpretation of inconsistent initial conditions and system properties of generalized state-space systems , 1998 .