SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress

[1]  L. Guarente,et al.  Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. , 2006, Genes & development.

[2]  W. Gu,et al.  Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage , 2006, Nature Cell Biology.

[3]  Y. Mo,et al.  Role of SUMO/Ubc9 in DNA Damage Repair and Tumorigenesis , 2006, Journal of Molecular Histology.

[4]  R. DePinho,et al.  Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. , 2006, Cancer research.

[5]  A. Rebbaa,et al.  Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1. , 2005, Cancer research.

[6]  S. Baylin,et al.  Tumor Suppressor HIC1 Directly Regulates SIRT1 to Modulate p53-Dependent DNA-Damage Responses , 2005, Cell.

[7]  E. Yeh,et al.  Differential Regulation of c-Jun-dependent Transcription by SUMO-specific Proteases* , 2005, Journal of Biological Chemistry.

[8]  S. Tachiiri,et al.  Role of NAD‐dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin‐induced cell death in vertebrate cells , 2005, Genes to cells : devoted to molecular & cellular mechanisms.

[9]  S. Nicosia,et al.  Suppression of FOXO1 activity by FHL2 through SIRT1‐mediated deacetylation , 2005, The EMBO journal.

[10]  S. Nemoto,et al.  Nutrient Availability Regulates SIRT1 Through a Forkhead-Dependent Pathway , 2004, Science.

[11]  K. Wells,et al.  Global shifts in protein sumoylation in response to electrophile and oxidative stress. , 2004, Chemical research in toxicology.

[12]  S. Vatner,et al.  Silent Information Regulator 2&agr;, a Longevity Factor and Class III Histone Deacetylase, Is an Essential Endogenous Apoptosis Inhibitor in Cardiac Myocytes , 2004, Circulation research.

[13]  J. Wood,et al.  Sirtuin activators mimic caloric restriction and delay ageing in metazoans , 2004, Nature.

[14]  Myriam Gorospe,et al.  Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacetylase , 2004, Science.

[15]  Zhengxin Wang,et al.  SENP1 Enhances Androgen Receptor-Dependent Transcription through Desumoylation of Histone Deacetylase 1 , 2004, Molecular and Cellular Biology.

[16]  L. Guarente,et al.  The Sir2 family of protein deacetylases. , 2004, Annual review of biochemistry.

[17]  E. Verdin,et al.  Sirtuins: Sir2-related NAD-dependent protein deacetylases , 2004, Genome Biology.

[18]  Steven P. Gygi,et al.  Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase , 2004, Science.

[19]  S. Müller,et al.  SUMO: a regulator of gene expression and genome integrity , 2004, Oncogene.

[20]  Hidde Ploegh,et al.  Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. , 2004, Molecular cell.

[21]  Delin Chen,et al.  Mammalian SIRT1 Represses Forkhead Transcription Factors , 2004, Cell.

[22]  S. Miyamoto,et al.  Sequential Modification of NEMO/IKKγ by SUMO-1 and Ubiquitin Mediates NF-κB Activation by Genotoxic Stress , 2003, Cell.

[23]  Phuong Chung,et al.  Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan , 2003, Nature.

[24]  Jiandong Chen,et al.  MDM2-ARF complex regulates p53 sumoylation , 2003, Oncogene.

[25]  S. Minucci,et al.  Human SIR2 deacetylates p53 and antagonizes PML/p53‐induced cellular senescence , 2002, The EMBO journal.

[26]  Z. Ronai,et al.  The Mdm-2 Amino Terminus Is Required for Mdm2 Binding and SUMO-1 Conjugation by the E2 SUMO-1 Conjugating Enzyme Ubc9* , 2001, The Journal of Biological Chemistry.

[27]  Delin Chen,et al.  Negative Control of p53 by Sir2α Promotes Cell Survival under Stress , 2001, Cell.

[28]  R. Weinberg,et al.  hSIR2SIRT1 Functions as an NAD-Dependent p53 Deacetylase , 2001, Cell.

[29]  L. Guarente,et al.  Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans , 2001, Nature.

[30]  P. Defossez,et al.  Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. , 2000, Science.

[31]  E. Yeh,et al.  Ubiquitin-like proteins: new wines in new bottles. , 2000, Gene.

[32]  L. Guarente,et al.  Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase , 2000, Nature.

[33]  E. Yeh,et al.  Differential Regulation of Sentrinized Proteins by a Novel Sentrin-specific Protease* , 2000, The Journal of Biological Chemistry.

[34]  M. McVey,et al.  The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. , 1999, Genes & development.

[35]  J. Broach,et al.  Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. , 1993, Genes & development.

[36]  R. E. Esposito,et al.  A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA , 1989, Cell.