Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces

[1] The size-frequency distributions of rocks >1.5 m diameter fully resolvable in High Resolution Imaging Science Experiment (HiRISE) images of the northern plains follow exponential models developed from lander measurements of smaller rocks and are continuous with rock distributions measured at the landing sites. Dark pixels at the resolution limit of Mars Orbiter Camera thought to be boulders are shown to be mostly dark shadows of clustered smaller rocks in HiRISE images. An automated rock detector algorithm that fits ellipses to shadows and cylinders to the rocks, accurately measured (within 1–2 pixels) rock diameter and height (by comparison to spacecraft of known size) of ∼10 million rocks over >1500 km2 of the northern plains. Rock distributions in these counts parallel models for cumulative fractional area covered by 30–90% rocks in dense rock fields around craters, 10–30% rock coverage in less dense rock fields, and 0–10% rock coverage in background terrain away from craters. Above ∼1.5 m diameter, HiRISE resolves the same population of rocks seen in lander images, and thus size-frequency distributions can be extrapolated along model curves to estimate the number of rocks at smaller diameters. Extrapolating sparse rock distributions in the Phoenix landing ellipse indicate <1% chance of encountering a potentially hazardous rock during landing or that could impede the opening of the solar arrays. Extrapolations further suggest rocks large enough to depress the ground ice table and small enough to be picked up or pushed by the robotic arm should be present within reach for study after landing.

[1]  W. K. Brown,et al.  Derivation of the Weibull distribution based on physical principles and its connection to the Rosin–Rammler and lognormal distributions , 1995 .

[2]  H. J. Moore,et al.  Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials , 1989 .

[3]  Matthew P. Golombek,et al.  Boulder Hazard Assessment of Potential Phoenix Landing Sites , 2006 .

[4]  J. A. Grant,et al.  Distribution of rocks on the Gusev Plains and on Husband Hill, Mars , 2006 .

[5]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[6]  A. F. C. Haldemann,et al.  Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations : Mars exploration rover mission and landing sites , 2003 .

[7]  R. Arvidson,et al.  Latitudinal variation of wind erosion of crater ejecta deposits on Mars , 1976 .

[8]  Geomorphology Context and THEMIS Appearance of Boulder Fields in Phoenix Landing Region B , 2006 .

[9]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[10]  M. Golombek,et al.  Analyses of Rock Size-Frequency Distributions and Morphometry of Modified Hawaiian Lava Flows: Implications for Future Martian Landing Sites , 2000 .

[11]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[12]  A. McEwen,et al.  Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter‐scale slopes of candidate Phoenix landing sites , 2008 .

[13]  M. Mellon,et al.  A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site , 2008 .

[14]  B. Clark,et al.  Effects of the Phoenix Lander descent thruster plume on the Martian surface , 2008 .

[15]  H. J. Moore,et al.  Assessment of Mars Pathfinder landing site predictions , 1999 .

[16]  A. Haldemann,et al.  Quantitative morphology of rocks at the Mars Pathfinder landing site , 2007 .

[17]  F. Haight Handbook of the Poisson Distribution , 1967 .

[18]  Philip R. Christensen,et al.  The spatial distribution of rocks on mars , 1986 .

[19]  A. McEwen,et al.  A Closer Look at Water-Related Geologic Activity on Mars , 2007, Science.

[20]  Raymond E. Arvidson,et al.  NASA Mars 2007 Phoenix Lander Robotic Arm and Icy Soil Acquisition Device , 2008 .

[21]  H. J. Moore,et al.  The Martian surface layer , 1992 .

[22]  P. Rosin The Laws Governing the Fineness of Powdered Coal , 1933 .

[23]  M. Mellon,et al.  The Martian Surface: Martian surface properties from joint analysis of orbital, Earth-based, and surface observations , 2008 .

[24]  J. Head,et al.  Characterization of rock populations on planetary surfaces: Techniques and a preliminary analysis of Mars and Venus , 1981 .

[25]  M. Golombek,et al.  Size‐frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions , 1997 .

[26]  A. Wolf,et al.  Passive imaging based hazard avoidance for spacecraft safe landing , 2001 .

[27]  Andres Huertas,et al.  Landing Hazard Detection with Stereo Vision and Shadow Analysis , 2007 .

[28]  A. F. C. Haldemann,et al.  Assessment of Mars Exploration Rover landing site predictions , 2005, Nature.

[29]  W. K. Brown,et al.  Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash , 1989 .

[30]  Larry H. Matthies,et al.  Stereo vision and shadow analysis for landing hazard detection , 2008, 2008 IEEE International Conference on Robotics and Automation.

[31]  Rebecca Castano,et al.  Geology of the Gusev cratered plains from the Spirit rover transverse , 2006 .

[32]  Robert M. Haberle,et al.  Aeolian Processes and their Effects on Understanding the Chronology of Mars , 2001 .

[33]  P.H. Smith The Phoenix mission to Mars , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[34]  Cary R. Spitzer,et al.  Physical properties of the surface materials at the Viking landing sites on Mars , 1987 .

[35]  R. Arvidson,et al.  Differential aeolian redistribution rates on Mars , 1979, Nature.

[36]  J. Keller,et al.  Surface-Material Maps of Viking Landing Sites on Mars , 1991 .

[37]  Raymond E. Arvidson,et al.  Size-frequency Distributions of Rocks on the Northern Plains of Mars in HiRISE Images with Special Reference to Phoenix Landing Sites , 2007 .

[38]  Yang Cheng,et al.  Passive imaging based multi-cue hazard detection for spacecraft safe landing , 2006, 2006 IEEE Aerospace Conference.

[39]  M. Mellon,et al.  Effects of soil heterogeneity on martian ground-ice stability and orbital estimates of ice table depth , 2005 .

[40]  R. E. Arvidson,et al.  Thermophysical Properties of the Phoenix Mars Landing Site Study Regions , 2006 .

[41]  R. Morris,et al.  Geomorphologic and mineralogic characterization of the northern plains of Mars at the Phoenix Mission candidate landing sites , 2008 .

[42]  S. Nowicki,et al.  Rock abundance on Mars from the Thermal Emission Spectrometer , 2007 .

[43]  John F. McCauley,et al.  Mariner 9 evidence for wind erosion in the equatorial and mid‐latitude regions of Mars , 1973 .

[44]  E. C. Morris,et al.  The geology of the Viking lander 2 site , 1977 .

[45]  J. Gilvarry,et al.  Fracture of Brittle Solids. II. Distribution Function for Fragment Size in Single Fracture (Experimental) , 1961 .

[46]  Clark F. Olson,et al.  Optical landmark detection for spacecraft navigation , 2003 .

[47]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[48]  Paul S. Smith,et al.  Mars Exploration Program 2007 Phoenix landing site selection and characteristics , 2008 .