Information sharing impact of stochastic diffusion search on differential evolution algorithm

This work details the research aimed at applying the powerful resource allocation mechanism deployed in stochastic diffusion search (SDS) to the differential evolution (DE), effectively merging a nature inspired swarm intelligence algorithm with a biologically inspired evolutionary algorithm. The results reported herein suggest that the hybrid algorithm, exploiting information sharing between the population elements, has the potential to improve the optimisation capability of classical DE algorithms. This claim is verified by running several experiments using state-of-the-art benchmarks. Additionally, the significance of the frequency within which SDS introduces communication and information exchange is also investigated.

[1]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[2]  R. Matthews,et al.  Ants. , 1898, Science.

[3]  John Mark Bishop,et al.  STOCHASTIC DIFFUSION: USING RECRUITMENT FOR SEARCH , 2003 .

[4]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[5]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[6]  Ville Tirronen,et al.  Parallel Random Injection Differential Evolution , 2010, EvoApplications.

[7]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[8]  Mohammad Majid al-Rifaie,et al.  An investigation into the merger of stochastic diffusion search and particle swarm optimisation , 2011, GECCO '11.

[9]  Roger M. Whitaker,et al.  An agent based approach to site selection for wireless networks , 2002, SAC '02.

[10]  Thorsten Dickhaus,et al.  Simultaneous Statistical Inference , 2014, Springer Berlin Heidelberg.

[11]  Kris De Meyer Explorations in Stochastic Diusion Search: soft- and hardware implementations of biologically inspired Spiking Neuron Stochastic Diusion Networks , 2000 .

[12]  Arvind S. Mohais,et al.  DynDE: a differential evolution for dynamic optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[13]  Mohammad Majid al-Rifaie,et al.  Creative or Not? Birds and Ants Draw with Muscles , 2011 .

[14]  Anna Ursyn,et al.  Biologically-Inspired Computing for the Arts: Scientific Data through Graphics , 2012 .

[15]  Janez Brest,et al.  Dynamic optimization using Self-Adaptive Differential Evolution , 2009, 2009 IEEE Congress on Evolutionary Computation.

[16]  Slawomir J. Nasuto,et al.  Steady State Resource Allocation Analysis of the Stochastic Diffusion Search , 2002, BICA 2015.

[17]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[18]  Slawomir J. Nasuto,et al.  Convergence Analysis of Stochastic Diffusion Search , 1999, Parallel Algorithms Appl..

[19]  Mehmet Fatih Tasgetiren,et al.  A Multi-Populated Differential Evolution Algorithm for Solving Constrained Optimization Problem , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[20]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[21]  John Mark Bishop,et al.  Minimum stable convergence criteria for Stochastic Diffusion Search , 2004 .

[22]  Mohammad Majid al-Rifaie,et al.  Creativity and Autonomy in Swarm Intelligence Systems , 2012, Cognitive Computation.

[23]  René Thomsen,et al.  Multimodal optimization using crowding-based differential evolution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[24]  Jürgen Branke,et al.  Efficient fitness estimation in noisy environments , 2001 .

[25]  Slawomir J. Nasuto,et al.  Time Complexity Analysis of the Stochastic Diffusion Search , 1998, NC.

[26]  Konstantinos G. Margaritis,et al.  An Experimental Study of Benchmarking Functions for Genetic Algorithms , 2002, Int. J. Comput. Math..

[27]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[28]  Dumitru Dumitrescu,et al.  Multimodal Optimization by Means of a Topological Species Conservation Algorithm , 2010, IEEE Transactions on Evolutionary Computation.

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  Mohammad Majid al-Rifaie,et al.  The mining game: a brief introduction to the Stochastic Diffusion Search metaheuristic , 2010 .

[31]  Slawomir J. Nasuto,et al.  Stochastic Diffusion Optimisation: the application of partial function evaluation and stochastic recruitment in Swarm Intelligence optimisation , 2006 .

[32]  G. Theraulaz,et al.  Inspiration for optimization from social insect behaviour , 2000, Nature.

[33]  Mohammad Majid al-Rifaie,et al.  Resource Allocation and Dispensation Impact of Stochastic Diffusion Search on Differential Evolution Algorithm , 2011, NICSO.

[34]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[35]  M. M�glich,et al.  Tandem Calling: A New Kind of Signal in Ant Communication , 1974, Science.

[36]  A. F. Ioffe,et al.  NEW MIGRATION SCHEME FOR PARALLEL DIFFERENTIAL EVOLUTION , 2006 .

[37]  Mohammad Majid al-Rifaie,et al.  Cooperation of Nature and Physiologically Inspired Mechanisms in Visualisation , 2012 .

[38]  Andy J. Keane,et al.  Evolutionary optimization for computationally expensive problems using Gaussian processes , 2001 .

[39]  J. Bishop Stochastic searching networks , 1989 .