Banach frames for alpha-modulation spaces

This paper is concerned with the characterization of $\alpha$-modulation spaces by Banach frames, i.e., stable and redundant non-orthogonal expansions, constituted of functions obtained by a suitable combination of translation, modulation and dilation of a mother atom. In particular, the parameter $\alpha \in [0,1]$ governs the dependence of the dilation factor on the frequency. The result is achieved by exploiting intrinsic properties of localization of such frames. The well-known Gabor and wavelet frames arise as special cases ($\alpha = 0$) and limiting case ($ \alpha \to 1)$, to characterize respectively modulation and Besov spaces. This intermediate theory contributes to a further answer to the theoretical need of a common interpretation and framework between Gabor and wavelet theory and to the construction of new tools for applications in time-frequency analysis, signal processing, and numerical analysis.

[1]  Gabriele Steidl,et al.  Weighted Coorbit Spaces and Banach Frames on Homogeneous Spaces , 2004 .

[2]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[3]  Joseph D. Lakey,et al.  Extensions of the Heisenberg Group by Dilations and Frames , 1995 .

[4]  H. Triebel Theory Of Function Spaces , 1983 .

[5]  Gabriele Steidl,et al.  Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to Analyzing Functions on Spheres , 2004 .

[6]  H. Feichtinger,et al.  A unified approach to atomic decompositions via integrable group representations , 1988 .

[7]  K. Gröchenig Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .

[8]  Rob P. Stevenson,et al.  Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..

[9]  Demetrio Labate,et al.  Oversampling, quasi-affine frames, and wave packets , 2004 .

[10]  H. Feichtinger,et al.  Banach Spaces of Distributions Defined by Decomposition Methods, I , 1985 .

[11]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[12]  H. Feichtinger,et al.  Irregular sampling theorems and series expansions of band-limited functions , 1992 .

[13]  E. Somersalo,et al.  A GENERALIZATION OF THE CALDERON-VAILLANCOURT THEOREM TO LP AND HP , 1988 .

[14]  M. Nielsen,et al.  Nonlinear approximation in α ‐modulation spaces , 2006 .

[15]  H. Feichtinger Atomic characterizations of modulation spaces through Gabor-type representations , 1989 .

[16]  Bruno Torrésani,et al.  Hybrid representations for audiophonic signal encoding , 2002, Signal Process..

[17]  Charles Fefferman,et al.  Wave packets and fourier integral operators , 1978 .

[18]  Karlheinz Gröchenig,et al.  Localization of frames II , 2004 .

[19]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[20]  B. Torrésani Wavelets associated with representations of the affine Weyl–Heisenberg group , 1991 .

[21]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[22]  B. Torrésani Time-frequency representations : wavelet packets and optimal decomposition , 1992 .

[23]  M. Holschneider,et al.  An Interpolation Family between Gabor and Wavelet Transformations , 2003 .