Physical key-protected one-time pad

We describe an encrypted communication principle that forms a secure link between two parties without electronically saving either of their keys. Instead, random cryptographic bits are kept safe within the unique mesoscopic randomness of two volumetric scattering materials. We demonstrate how a shared set of patterned optical probes can generate 10 gigabits of statistically verified randomness between a pair of unique 2 mm3 scattering objects. This shared randomness is used to facilitate information-theoretically secure communication following a modified one-time pad protocol. Benefits of volumetric physical storage over electronic memory include the inability to probe, duplicate or selectively reset any bits without fundamentally altering the entire key space. Our ability to securely couple the randomness contained within two unique physical objects can extend to strengthen hardware required by a variety of cryptographic protocols, which is currently a critically weak link in the security pipeline of our increasingly mobile communication culture.

[1]  Osamu Matoba,et al.  Optical Techniques for Information Security , 2009, Proceedings of the IEEE.

[2]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[3]  Ken Umeno,et al.  Corrections of the NIST Statistical Test Suite for Randomness , 2004, IACR Cryptol. ePrint Arch..

[4]  Silvio Micali,et al.  Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hardware Tampering , 2004, TCC.

[5]  Miodrag Potkonjak,et al.  Hardware-Based Public-Key Cryptography with Public Physically Unclonable Functions , 2009, Information Hiding.

[6]  Boris Skoric Security with Noisy Data - (Extended Abstract of Invited Talk) , 2010, Information Hiding.

[7]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[8]  Srinivas Devadas,et al.  Controlled physical random functions and applications , 2008, TSEC.

[9]  P. Elias The Efficient Construction of an Unbiased Random Sequence , 1972 .

[10]  I. Kanter,et al.  An optical ultrafast random bit generator , 2010 .

[11]  William M. Daley,et al.  Security Requirements for Cryptographic Modules , 1999 .

[12]  Y. Peres Iterating Von Neumann's Procedure for Extracting Random Bits , 1992 .

[13]  Miodrag Potkonjak,et al.  Techniques for Design and Implementation of Secure Reconfigurable PUFs , 2009, TRETS.

[14]  Frans M. J. Willems,et al.  The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.

[15]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[16]  Laurent Larger,et al.  Optical Cryptosystem Based on Synchronization of Hyperchaos Generated by a Delayed Feedback Tunable Laser Diode , 1998 .

[17]  Jacob Scheuer,et al.  Giant fiber lasers: a new paradigm for secure key distribution. , 2006, Physical review letters.

[18]  Moni Naor,et al.  Nonmalleable Cryptography , 2000, SIAM Rev..

[19]  Rafail Ostrovsky,et al.  Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data , 2004, SIAM J. Comput..

[20]  Martin Wattenberg,et al.  A fuzzy commitment scheme , 1999, CCS '99.

[21]  Feng,et al.  Correlations and fluctuations of coherent wave transmission through disordered media. , 1988, Physical review letters.

[22]  Leonid Bolotnyy,et al.  Physically Unclonable Function-Based Security and Privacy in RFID Systems , 2007, Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom'07).

[23]  Ross J. Anderson,et al.  On a new way to read data from memory , 2002, First International IEEE Security in Storage Workshop, 2002. Proceedings..

[24]  Ross J. Anderson,et al.  Optical Fault Induction Attacks , 2002, CHES.

[25]  Srinivas Devadas,et al.  Modeling attacks on physical unclonable functions , 2010, CCS '10.

[26]  Avi Zadok,et al.  Secure key generation using an ultra-long fiber laser: transient analysis and experiment. , 2008, Optics express.

[27]  Elbert Gerjan Putten Disorder-enhanced imaging with spatially controlled light , 2011 .

[28]  Boris Skoric,et al.  Read-Proof Hardware from Protective Coatings , 2006, CHES.

[29]  Suela Kodra Fuzzy extractors : How to generate strong keys from biometrics and other noisy data , 2015 .

[30]  Boris Skoric,et al.  Security with Noisy Data: Private Biometrics, Secure Key Storage and Anti-Counterfeiting , 2007 .

[31]  Jorge Guajardo,et al.  Physical Unclonable Functions, FPGAs and Public-Key Crypto for IP Protection. , 2007 .

[32]  Feng,et al.  Memory effects in propagation of optical waves through disordered media. , 1988, Physical review letters.

[33]  Yevgeniy Dodis,et al.  Correcting errors without leaking partial information , 2005, STOC '05.

[34]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[35]  G. Edward Suh,et al.  Extracting secret keys from integrated circuits , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[36]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[37]  Boris Skoric,et al.  Estimating the Secrecy-Rate of Physical Unclonable Functions with the Context-Tree Weighting Method , 2006, 2006 IEEE International Symposium on Information Theory.

[38]  Bernard P. Zajac Applied cryptography: Protocols, algorithms, and source code in C , 1994 .

[39]  Frederik Armknecht,et al.  A Formal Foundation for the Security Features of Physical Functions , 2011, S&P 2011.

[40]  Srinivas Devadas,et al.  Secure and robust error correction for physical unclonable functions , 2010, IEEE Design & Test of Computers.

[41]  Changhuei Yang,et al.  Markov speckle for efficient random bit generation. , 2012, Optics express.

[42]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[43]  W. Ophey,et al.  Robust key extraction from Physical , .

[44]  I. Vellekoop Controlling the propagation of light in disordered scattering media , 2008, 0807.1087.

[45]  M. V. Rossum,et al.  Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion , 1998, cond-mat/9804141.

[46]  Jacob Scheuer Giant Fiber Lasers (GFL) - A New Paradigm for Secure Key Distribution , 2006, 2006 European Conference on Optical Communications.

[47]  Boris Skoric On the entropy of keys derived from laser speckle; statistical properties of Gabor-transformed speckle , 2008 .

[48]  R. Pappu,et al.  Physical One-Way Functions , 2002, Science.

[49]  Markus G. Kuhn,et al.  Low Cost Attacks on Tamper Resistant Devices , 1997, Security Protocols Workshop.

[50]  Markus G. Kuhn,et al.  Tamper resistance: a cautionary note , 1996 .

[51]  Sedat Akleylek,et al.  Security requirements for cryptographic modules , 2013 .

[52]  S. Popoff,et al.  Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. , 2009, Physical review letters.

[53]  Stephen A. Benton,et al.  Physical one-way functions , 2001 .

[54]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[55]  Jehoshua Bruck,et al.  Linear extractors for extracting randomness from noisy sources , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[56]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[57]  Noam Nisan,et al.  Randomness is Linear in Space , 1996, J. Comput. Syst. Sci..

[58]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[59]  Jorge Guajardo,et al.  FPGA Intrinsic PUFs and Their Use for IP Protection , 2007, CHES.

[60]  Joos Vandewalle,et al.  Resynchronization Weaknesses in Synchronous Stream Ciphers , 1994, EUROCRYPT.