Machine Learning Non-Markovian Quantum Dynamics.

Machine learning methods have proved to be useful for the recognition of patterns in statistical data. The measurement outcomes are intrinsically random in quantum physics, however, they do have a pattern when the measurements are performed successively on an open quantum system. This pattern is due to the system-environment interaction and contains information about the relaxation rates as well as non-Markovian memory effects. Here we develop a method to extract the information about the unknown environment from a series of projective single-shot measurements on the system (without resorting to the process tomography). The method is based on embedding the non-Markovian system dynamics into a Markovian dynamics of the system and the effective reservoir of finite dimension. The generator of Markovian embedding is learned by the maximum likelihood estimation. We verify the method by comparing its prediction with an exactly solvable non-Markovian dynamics. The developed algorithm to learn unknown quantum environments enables one to efficiently control and manipulate quantum systems.

[1]  Kavan Modi,et al.  Quantum Markov Order. , 2018, Physical review letters.

[2]  K. Modi,et al.  Reconstructing non-Markovian quantum dynamics with limited control , 2016, Physical Review A.

[3]  Ian R. Petersen,et al.  Modeling for Non-Markovian Quantum Systems , 2017, IEEE Transactions on Control Systems Technology.

[4]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[5]  Ronald Hanson,et al.  Quenching spin decoherence in diamond through spin bath polarization. , 2008, Physical review letters.

[6]  Jianshu Cao,et al.  Non-Markovian dynamical maps: numerical processing of open quantum trajectories. , 2013, Physical review letters.

[7]  M B Plenio,et al.  Nonperturbative Treatment of non-Markovian Dynamics of Open Quantum Systems. , 2017, Physical review letters.

[8]  Leonas Valkunas,et al.  Applicability of transfer tensor method for open quantum system dynamics. , 2017, The Journal of chemical physics.

[9]  Leonas Valkunas,et al.  Molecular Excitation Dynamics and Relaxation: VALKUNAS:MOLECULAR EXCITATION DYNAMICS AND RELAXATION O-BK , 2013 .

[10]  Nikesh S. Dattani,et al.  Entanglement in a quantum neural network based on quantum dots , 2015 .

[11]  Yu. I. Bogdanov,et al.  Quantum polarization transformations in anisotropic dispersive media , 2013 .

[12]  Li Li,et al.  Concepts of quantum non-Markovianity: A hierarchy , 2017, Physics Reports.

[13]  J. Wrachtrup,et al.  Quantum process tomography and Linblad estimation of a solid-state qubit , 2006, quant-ph/0601167.

[14]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[15]  Kurt Busch,et al.  Direct observation of non-Markovian radiation dynamics in 3D bulk photonic crystals. , 2012, Physical review letters.

[16]  S. N. Filippov,et al.  Quantum evolution in the stroboscopic limit of repeated measurements , 2016, 1609.05501.

[17]  Felix A. Pollock,et al.  An Introduction to Operational Quantum Dynamics , 2017, Open Syst. Inf. Dyn..

[18]  S. N. Filippov,et al.  Quantum Mappings and Characterization of Entangled Quantum States , 2019, Journal of Mathematical Sciences.

[19]  Simone Severini,et al.  Modelling non-markovian quantum processes with recurrent neural networks , 2018, New Journal of Physics.

[20]  D. A. Grigoriev,et al.  Machine learning of Markovian embedding for non-Markovian quantum dynamics , 2019 .

[21]  Fabio Costa,et al.  Quantum causal modelling , 2015, 1512.07106.

[22]  Pu Huang,et al.  Observation of non-Markovianity at room temperature by prolonging entanglement in solids. , 2018, Science bulletin.

[23]  Neill Lambert,et al.  Energy transfer in structured and unstructured environments: Master equations beyond the Born-Markov approximations. , 2015, The Journal of chemical physics.

[24]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2015, 1511.06994.

[25]  Matteo G. A. Paris,et al.  Continuous-variable quantum probes for structured environments , 2017, 1710.06474.

[26]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[27]  Manuel Gessner,et al.  Detecting nonclassical system-environment correlations by local operations. , 2011, Physical review letters.

[28]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[29]  Göran Lindblad,et al.  Non-Markovian quantum stochastic processes and their entropy , 1979 .

[30]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[31]  Fabio Costa,et al.  Quantum Markovianity as a supervised learning task , 2018, International Journal of Quantum Information.

[32]  M. Kim,et al.  Completely Positive Divisibility Does Not Mean Markovianity. , 2019, Physical review letters.

[33]  G. Guo,et al.  Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems , 2011, 1109.2677.

[34]  S. Hughes,et al.  Phonon-modified spontaneous emission from single quantum dots in a structured photonic medium , 2014 .

[35]  Ryan S. Bennink,et al.  Quantum Process Identification: A Method for Characterizing Non-Markovian Quantum Dynamics , 2018 .

[36]  Klaus Mølmer,et al.  Past quantum states of a monitored system. , 2013, Physical review letters.

[37]  S. Nakajima On Quantum Theory of Transport Phenomena Steady Diffusion , 1958 .

[38]  J. Piilo,et al.  Pseudomodes as an effective description of memory: Non-Markovian dynamics of two-state systems in st , 2008, 0810.1361.

[39]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[40]  Jyrki Piilo,et al.  Measure for the non-Markovianity of quantum processes , 2010, 1002.2583.

[41]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2017 .

[42]  A. Isar,et al.  ABOUT QUANTUM-SYSTEMS , 2004 .

[43]  Felix A. Pollock,et al.  Exploiting the Causal Tensor Network Structure of Quantum Processes to Efficiently Simulate Non-Markovian Path Integrals. , 2019, Physical review letters.

[44]  Jonathan Leach,et al.  Quantum process tomography via completely positive and trace-preserving projection , 2018, Physical Review A.

[45]  Sergey N. Filippov,et al.  Time deformations of master equations , 2018, Physical Review A.

[46]  J. Piilo,et al.  Divisibility of quantum dynamical maps and collision models , 2017, 1708.04994.

[47]  Jayaseetha Rau Relaxation Phenomena in Spin and Harmonic Oscillator Systems , 1963 .

[48]  A. A. Budini,et al.  Quantum Non-Markovian Processes Break Conditional Past-Future Independence. , 2018, Physical review letters.

[49]  Francesco Ciccarello,et al.  Composite quantum collision models , 2017 .

[50]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[51]  A. A. Budini,et al.  Embedding non-Markovian quantum collisional models into bipartite Markovian dynamics , 2013 .

[52]  S. N. Filippov,et al.  Quantum master equations for a system interacting with a quantum gas in the low-density limit and for the semiclassical collision model , 2019, Physical Review A.

[53]  J. Ignacio Cirac,et al.  Simulating quantum-optical phenomena with cold atoms in optical lattices , 2010, 1010.1730.

[54]  W.-G. Zhang,et al.  Observation of entanglement sudden death and rebirth by controlling a solid-state spin bath , 2018, Physical review B.

[55]  M B Plenio,et al.  Controllable Non-Markovianity for a Spin Qubit in Diamond. , 2018, Physical review letters.

[56]  V. Scarani,et al.  Thermalizing quantum machines: dissipation and entanglement. , 2001, Physical review letters.

[57]  A Strathearn,et al.  Efficient non-Markovian quantum dynamics using time-evolving matrix product operators , 2017, Nature Communications.

[58]  G. D’Ariano,et al.  Theoretical framework for quantum networks , 2009, 0904.4483.

[59]  J I Cirac,et al.  Quantum Emitters in Two-Dimensional Structured Reservoirs in the Nonperturbative Regime. , 2017, Physical review letters.

[60]  Kavan Modi,et al.  Tomographically reconstructed master equations for any open quantum dynamics , 2017, Quantum.

[61]  Prateek Jain,et al.  Non-convex Optimization for Machine Learning , 2017, Found. Trends Mach. Learn..

[62]  Heinz-Peter Breuer,et al.  Measurement of quantum memory effects and its fundamental limitations , 2018 .

[63]  I A Luchnikov,et al.  Simulation Complexity of Open Quantum Dynamics: Connection with Tensor Networks. , 2018, Physical review letters.

[64]  Thomas Frauenheim,et al.  Operational Markov Condition for Quantum Processes. , 2018, Physical review letters.

[65]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[66]  K. Hughes Dynamics of Open Quantum Systems , 2006 .

[67]  B. M. Garraway,et al.  Nonperturbative decay of an atomic system in a cavity , 1997 .

[68]  Neill Lambert,et al.  Environmental dynamics, correlations, and the emergence of noncanonical equilibrium states in open quantum systems , 2013, 1311.0016.

[69]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[70]  J. Eisert,et al.  Observation of non-Markovian micromechanical Brownian motion , 2013, Nature Communications.

[71]  Imamoglu Stochastic wave-function approach to non-Markovian systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[72]  Franco Nori,et al.  Entanglement dynamics of two qubits in a common bath , 2012, 1202.0688.

[73]  Jun-Hong An,et al.  Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities , 2013, 1301.7494.

[74]  Ian R. Petersen,et al.  Quantum filter for a class of non-Markovian quantum systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[75]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[76]  Bassano Vacchini,et al.  System-environment correlations and Markovian embedding of quantum non-Markovian dynamics , 2018, Physical Review A.

[77]  M. Paternostro,et al.  Non-Markovian quantum processes: Complete framework and efficient characterization , 2015, 1512.00589.