Mixing of the symmetric exclusion processes in terms of the corresponding single-particle random walk

We prove an upper bound for the e-mixing time of the symmetric exclusion process on any graph G, with any feasible number of particles. Our estimate is proportional to TRW(G)ln(|V|/e), where |V| is the number of vertices in G, and TRW(G) is the 1/4-mixing time of the corresponding single-particle random walk. This bound implies new results for symmetric exclusion on expanders, percolation clusters, the giant component of the Erdos–Renyi random graph and Poisson point processes in Rd. Our technical tools include a variant of Morris’s chameleon process.

[1]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[2]  Ben Morris,et al.  Spectral gap for the zero range process with constant rate , 2004, math/0405161.

[3]  Gabor Pete A note on percolation on $Z^d$: isoperimetric profile via exponential cluster repulsion , 2007 .

[4]  Ben Morris The mixing time for simple exclusion , 2004, math/0405157.

[5]  D. Aldous Some Inequalities for Reversible Markov Chains , 1982 .

[6]  Y. Peres,et al.  Evolving sets, mixing and heat kernel bounds , 2003, math/0305349.

[7]  Isoperimetric inequalities and mixing time for a random walk on a random point process , 2006, math/0607805.

[8]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[9]  V. Climenhaga Markov chains and mixing times , 2013 .

[10]  Nikolaos Fountoulakis,et al.  The evolution of the mixing rate of a simple random walk on the giant component of a random graph , 2008 .

[11]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[12]  Tzong-Yow Lee,et al.  Logarithmic Sobolev inequality for some models of random walks , 1998 .

[13]  Thomas M. Liggett,et al.  A characterization of the invariant measures for an infinite particle system with interactions , 1973 .

[14]  Improved mixing time bounds for the Thorp shuffle and L-reversal chain. , 2008 .

[15]  Elchanan Mossel,et al.  On the mixing time of a simple random walk on the super critical percolation cluster , 2000 .

[16]  T. Liggett,et al.  Proof of Aldous' spectral gap conjecture , 2009, 0906.1238.

[17]  H. Yau Logarithmic Sobolev inequality for generalized simple exclusion processes , 1997 .

[18]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[19]  A. B. Dieker Interlacings for Random Walks on Weighted Graphs and the Interchange Process , 2010, SIAM J. Discret. Math..

[20]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[21]  T. Liggett Interacting Particle Systems , 1985 .

[22]  Nicholas C. Wormald,et al.  The mixing time of the giant component of a random graph , 2006, Random Struct. Algorithms.

[23]  Ravi Montenegro,et al.  Mathematical Aspects of Mixing Times in Markov Chains , 2006, Found. Trends Theor. Comput. Sci..

[24]  Alan M. Frieze,et al.  Multiple Random Walks and Interacting Particle Systems , 2009, ICALP.

[25]  Enrique D. Andjel A Correlation Inequality for the Symmetric Exclusion Process , 1988 .