Machine Learning for Biometrics

Biometrics aims at reliable and robust identication of humans from their personal traits, mainly for security and authentication purposes, but also for identifying and tracking the users of smarter applications. Frequently considered modalities are ngerprint, face, iris, palmprint and voice, but there are many other possible biometrics, including gait, ear image, retina, DNA, and even behaviours. This chapter presents a survey of machine learning methods used for biometrics applications, and identies relevant research issues. The author focuses on three areas of interest: ofine methods for biometric template construction and recognition, information fusion methods for integrating multiple biometrics to obtain robust results, and methods for dealing with temporal information. By introducing exemplary and inuential machine learning approaches in the context of specic biometrics applications, the author hopes to provide the reader with the means to create novel machine learning solutions to challenging biometrics problems.

[1]  Bülent Sankur,et al.  Robust facial landmarking for registration , 2007, Ann. des Télécommunications.

[2]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Albert Ali Salah,et al.  Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal Biometric Fusion Algorithms , 2009, IEEE Transactions on Information Forensics and Security.

[4]  Albert Ali Salah,et al.  Incremental mixtures of factor analysers , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[5]  Jiri Matas,et al.  Feature-based affine-invariant localization of faces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Takeo Kanade,et al.  Multi-PIE , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[7]  Albert Ali Salah,et al.  A Selective Attention-Based Method for Visual Pattern Recognition with Application to Handwritten Digit Recognition and Face Recognition , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Manuele Bicego,et al.  Using hidden Markov models and wavelets for face recognition , 2003, 12th International Conference on Image Analysis and Processing, 2003.Proceedings..

[9]  David Zhang,et al.  Online Palmprint Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Manuele Bicego,et al.  A Hidden Markov Model-Based Approach to Sequential Data Clustering , 2002, SSPR/SPR.

[11]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[12]  Bernadette Dorizzi,et al.  Guide to Biometric Reference Systems and Performance Evaluation , 2009 .

[13]  Arun Ross,et al.  Information fusion in biometrics , 2003, Pattern Recognit. Lett..

[14]  Hong-Yuan Mark Liao,et al.  Person identification using facial motion , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[15]  Raymond N. J. Veldhuis,et al.  Likelihood-ratio-based biometric verification , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[16]  Anil K. Jain,et al.  Soft Biometric Traits for Personal Recognition Systems , 2004, ICBA.

[17]  Douglas A. Reynolds,et al.  Speaker Verification Using Adapted Gaussian Mixture Models , 2000, Digit. Signal Process..

[18]  Alice J. O'Toole,et al.  FRVT 2006 and ICE 2006 large-scale results , 2007 .

[19]  Zoubin Ghahramani,et al.  Learning Dynamic Bayesian Networks , 1997, Summer School on Neural Networks.

[20]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[21]  Berk Gökberk,et al.  Rank-based decision fusion for 3D shape-based face recognition , 2005, Proceedings of the IEEE 13th Signal Processing and Communications Applications Conference, 2005..

[22]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[23]  Josef Kittler,et al.  On the Use of Log-Likelihood Ratio Based Model-Specific Score Normalisation in Biometric Authentication , 2007, ICB.

[24]  Sharath Pankanti,et al.  Guide to Biometrics , 2003, Springer Professional Computing.

[25]  Sun-Yuan Kung,et al.  Biometric Authentication: A Machine Learning Approach , 2004 .

[26]  Ioannis Pitas,et al.  Multimodal decision-level fusion for person authentication , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[27]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Ethem Alpaydin,et al.  Ordering and finding the best of K > 2 supervised learning algorithms , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Tieniu Tan,et al.  Improving iris recognition accuracy via cascaded classifiers , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[30]  Xudong Jiang,et al.  Online Fingerprint Template Improvement , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[32]  Stan Z. Li,et al.  Advances in Biometrics, International Conference, ICB 2007, Seoul, Korea, August 27-29, 2007, Proceedings , 2007, ICB.

[33]  Alex Acero,et al.  Spoken Language Processing , 2001 .

[34]  Albert Ali Salah,et al.  2D Face Recognition , 2009 .

[35]  Berk Gökberk,et al.  3D Face Recognition: Technology and Applications , 2009, Handbook of Remote Biometrics.

[36]  John P. Baker,et al.  Fusing multimodal biometrics with quality estimates via a Bayesian belief network , 2008, Pattern Recognit..

[37]  J. L. Wayman,et al.  Best practices in testing and reporting performance of biometric devices. , 2002 .

[38]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[39]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[40]  Rama Chellappa,et al.  Facial similarity across age, disguise, illumination and pose , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[41]  Anil K. Jain,et al.  Likelihood Ratio-Based Biometric Score Fusion , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Joseph B. Kruskall,et al.  The Symmetric Time-Warping Problem : From Continuous to Discrete , 1983 .