Biomedical Magnesium Alloys: A review of material properties, surface modifications and potential as a biodegradable orthopaedic implant

Magnesium and magnesium based alloys are lightweight metallic materials that are extremely biocompatible and have similar mechanical properties to natural bone. These materials have the potential to function as an osteoconductive and biodegradable substitute in load bearing applications in the field of hard tissue engineering. However, the effects of corrosion and degradation in the physiological environment of the body has prevented their wide spread application to date. The aim of this review is to examine the properties, chemical stability, degradation in situ and methods of improving the corrosion resistance of magnesium and its alloys for potential application in the orthopaedic field. To be an effective implant, the surface and sub-surface properties of the material needs to be carefully selected so that the degradation kinetics of the implant can be efficiently controlled. Several surface modification techniques are presented and their effectiveness in reducing the corrosion rate and methods of controlling the degradation period are discussed. Ideally, balancing the gradual loss of material and mechanical strength during degradation, with the increasing strength and stability of the newly forming bone tissue is the ultimate goal. If this goal can be achieved, then orthopaedic implants manufactured from magnesium based alloys have the potential to deliver successful clinical outcomes without the need for revision surgery.

[1]  W. Dietzel,et al.  Corrosion Behavior of TiO2 Coating on Magnesium Alloy AM60 in Hank’s Solution , 2008 .

[2]  K. Ishihara,et al.  Reduction of surface-induced inflammatory reaction on PLGA/MPC polymer blend. , 2002, Biomaterials.

[3]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[4]  Edward Ghali,et al.  Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance, and Testing , 2010 .

[5]  K. P. Rao,et al.  Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. , 1995, Biomaterials.

[6]  Da-Ming Wang,et al.  Preparation of γ-PGA/chitosan composite tissue engineering matrices , 2005 .

[7]  R. Bodmeier,et al.  Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles. , 2008, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[8]  H. Hauner,et al.  Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds. , 2003, Biomaterials.

[9]  Tong Cui,et al.  Electrodeposition of hydroxyapatite coating on Mg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation, hemolysis, and cytotoxicity. , 2012, Journal of biomedical materials research. Part A.

[10]  Ying Wang,et al.  Effects of Post Heat Treatment on the Interfacial Characteristics of Aluminum Coated AZ91D Magnesium Alloy , 2007 .

[11]  John E. Davies,et al.  The bone-biomaterial interface , 1991 .

[12]  W. Banks,et al.  Aluminum-Induced neurotoxicity: Alterations in membrane function at the blood-brain barrier , 1989, Neuroscience & Biobehavioral Reviews.

[13]  김종영 Thermal Spray Coating , 1993 .

[14]  Ke Yang,et al.  In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. , 2009, Biomaterials.

[15]  D. Deyoung,et al.  The response of cancellous and cortical canine bone to hydroxylapatite-coated and uncoated titanium rods. , 1995, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[16]  Ke Yang,et al.  In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. , 2007, Journal of biomedical materials research. Part A.

[17]  A. Blom V) Which scaffold for which application , 2007 .

[18]  Mamoru Mabuchi,et al.  Processing of biocompatible porous Ti and Mg , 2001 .

[19]  Joshua J. Jacobs,et al.  Corrosion of metal orthopaedic implants. , 1998, The Journal of bone and joint surgery. American volume.

[20]  M. Hall,et al.  Manganese Transport and Trafficking: Lessons Learned from Saccharomyces cerevisiae , 2005, Eukaryotic Cell.

[21]  T. Szekeres,et al.  Four‐year study of cobalt and chromium blood levels in patients managed with two different metal‐on‐metal total hip replacements , 2003, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[22]  V. Sinha,et al.  Polysaccharides in colon-specific drug delivery. , 2001, International journal of pharmaceutics.

[23]  T. E. Abraham,et al.  Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[24]  K. Arakawa,et al.  Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends , 2007 .

[25]  Andrej Atrens,et al.  A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy , 2005 .

[26]  Zhiyuan Hu,et al.  Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems. , 2007, Journal of biotechnology.

[27]  W. Zhou,et al.  Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy , 2000 .

[28]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[29]  K. Endo Chemical modification of metallic implant surfaces with biofunctional proteins (Part 2). Corrosion resistance of a chemically modified NiTi alloy. , 1995, Dental materials journal.

[30]  V. Kuznetsov,et al.  Calcium–phosphate coatings obtained biomimetically on magnesium substrates under low magnetic field , 2012 .

[31]  B. Shaw Corrosion Resistance of Magnesium Alloys , 2003 .

[32]  Jia-cong Shen,et al.  Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. , 2005, Biomaterials.

[33]  J. Jung,et al.  Amidolysis of some biodegradable polymers , 1999 .

[34]  Seeram Ramakrishna,et al.  Development of nanocomposites for bone grafting , 2005 .

[35]  A. McGoron,et al.  Biodegradable Magnesium Alloys: A Review of Material Development and Applications , 2012, Journal of biomimetics, biomaterials, and tissue engineering.

[36]  Ke Yang,et al.  Phosphating treatment and corrosion properties of Mg–Mn–Zn alloy for biomedical application , 2009, Journal of materials science. Materials in medicine.

[37]  S. Downes,et al.  Blends of synthetic and natural polymers as drug delivery systems for growth hormone. , 1995, Biomaterials.

[38]  A. Weisheit,et al.  Improving the Surface Properties of Magnesium by Laser Alloying , 1998 .

[39]  D. Williams,et al.  Albumin adsorption on metal surfaces. , 1988, Biomaterials.

[40]  刘成龙,et al.  Preparation of calcium phosphate coatings on Mg-1.0Ca alloy , 2010 .

[41]  C. Dong,et al.  Surface modification of steels and magnesium alloy by high current pulsed electron beam , 2005 .

[42]  Ekkard Brinksmeier,et al.  Surface hardening by strain induced martensitic transformation , 2008, Prod. Eng..

[43]  Larry L. Hench,et al.  An Introduction to Bioceramics , 2013 .

[44]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[45]  M. N. R. Kumar A review of chitin and chitosan applications , 2000 .

[46]  H. Kanetaka,et al.  Medical application of magnesium and its alloys as degradable biomaterials , 2010 .

[47]  Yumiko Nakamura,et al.  Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. , 1997, Fundamental and applied toxicology : official journal of the Society of Toxicology.

[48]  L. Yin,et al.  Bio-corrosion and polymer coating modification of magnesium alloys for medicine , 2008 .

[49]  M. Malinconico,et al.  Preparation and characterisation of composites based on biodegradable polymers for “in vivo” application , 2000 .

[50]  G. Rodan Bone homeostasis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Duane A Robinson,et al.  In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. , 2010, Acta biomaterialia.

[52]  G. Multhaup,et al.  Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases , 2001, Brain Research Bulletin.

[53]  Yufeng Zheng,et al.  A review on magnesium alloys as biodegradable materials , 2010 .

[54]  Shizhe Song,et al.  A Possible Biodegradable Magnesium Implant Material , 2007 .

[55]  E. Han,et al.  Corrosion and Protection of Magnesium Alloy AZ31D by a New Conversion Coating , 2003 .

[56]  Peter X Ma,et al.  Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. , 2004, Biomaterials.

[57]  E. Willbold,et al.  Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response. , 2007, Journal of biomedical materials research. Part A.

[58]  Jong-Chul Park,et al.  Investigation on biodegradable PLGA scaffold with various pore size structure for skin tissue engineering , 2007 .

[59]  C. Hellmich,et al.  Average hydroxyapatite concentration is uniform in the extracollagenous ultrastructure of mineralized tissues: evidence at the 1–10-μm scale , 2003, Biomechanics and modeling in mechanobiology.

[60]  N. Saka,et al.  Microplasmic ceramic coating , 2001 .

[61]  Philippe Menei,et al.  In vitro study of GDNF release from biodegradable PLGA microspheres. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[62]  B. Denkena,et al.  Biocompatible Magnesium Alloys as Degradable Implant Materials - Machining Induced Surface and Subsurface Properties and Implant Performance , 2011 .

[63]  Yong Wang,et al.  Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid , 2004 .

[64]  John F. Kennedy,et al.  CHITOSAN/ORGANIC RECTORITE NANOCOMPOSITE FILMS: STRUCTURE, CHARACTERISTIC AND DRUG DELIVERY BEHAVIOUR , 2007 .

[65]  L. Lorand,et al.  Influence of a natural and a synthetic inhibitor of factor XIIIa on fibrin clot rheology. , 1999, Biophysical journal.

[66]  Jochem Nagels,et al.  Stress shielding and bone resorption in shoulder arthroplasty. , 2003, Journal of shoulder and elbow surgery.

[67]  B. Luan,et al.  Protective coatings on magnesium and its alloys — a critical review , 2002 .

[68]  Yong Han,et al.  The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites , 2010 .

[69]  Elliot P. Douglas,et al.  Bone structure and formation: A new perspective , 2007 .

[70]  G. Song,et al.  Corrosion and Electrochemical Evaluation of Coated Magnesium Alloys , 2012 .

[71]  Yang Ke Preparation and property of coating on degradable Mg implant , 2007 .

[72]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[73]  Seeram Ramakrishna,et al.  Biomaterials: A Nano Approach , 2010 .

[74]  E. P. Katz,et al.  Structure and function of bone collagen fibrils. , 1973, Journal of molecular biology.

[75]  Guoping Chen,et al.  Evaluation of PLLA-collagen hybrid sponge as a scaffold for cartilage tissue engineering , 2004 .

[76]  H. Hsieh,et al.  Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. , 2003, Biomaterials.

[77]  E. Broszeit,et al.  Wear and Corrosion Protection of Aluminum and Magnesium Alloys Using Chromium and Chromium Nitride PVD Coatings , 1999 .

[78]  B. Boyan,et al.  Effect of titanium surface characteristics on chondrocytes and osteoblasts in vitro , 1995 .

[79]  A Leith,et al.  Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. , 1993, Journal of structural biology.

[80]  J. Prendergast,et al.  Chemical gas gangrene from metallic magnesium , 1942 .

[81]  P. Ducheyne,et al.  Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. , 1980, Journal of biomedical materials research.

[82]  A. J. Bolton,et al.  Fractionation and characterization of polysaccharides from abaca fibre , 1998 .

[83]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.

[84]  Cuilian Wen,et al.  Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications , 2009 .

[85]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[86]  S. J. Kim,et al.  Anodizing of Mg alloys in alkaline solutions , 2003 .

[87]  D. Mantovani,et al.  Spontaneous and Biomimetic Apatite Formation on Pure Magnesium , 2007 .

[88]  J. Jagur-grodzinski Biomedical application of functional polymers , 1999 .

[89]  P. A. Dearnley,et al.  A brief review of test methodologies for surface-engineered biomedical implant alloys , 2005 .

[90]  Fabrizio Zucchi,et al.  Electrochemical behaviour of a magnesium alloy containing rare earth elements , 2006 .

[91]  A. Boccaccini,et al.  Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[92]  A R Boccaccini,et al.  Biomedical coatings on magnesium alloys - a review. , 2012, Acta biomaterialia.

[93]  G. Thompson,et al.  A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites , 1995 .

[94]  K. Shakesheff,et al.  The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation. , 2008, Biomaterials.

[95]  R. Guidoin,et al.  Evaluation of biodegradable synthetic scaffold coated on arterial prostheses implanted in rat subcutaneous tissue. , 2005, Biomaterials.

[96]  David Richard Andrews The erosion of metals , 1980 .

[97]  P. Uggowitzer,et al.  MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. , 2009, Nature materials.

[98]  N E Saris,et al.  Magnesium. An update on physiological, clinical and analytical aspects. , 2000, Clinica chimica acta; international journal of clinical chemistry.

[99]  T. Kissel,et al.  Biodegradable brush-like graft polymers from poly(d,l-lactide) or poly(d,l-lactide-co-glycolide) and charge-modified, hydrophilic dextrans as backbone—Synthesis, characterization and in vitro degradation properties , 1997 .

[100]  L. Dobrzański,et al.  Laser surface treatment of cast magnesium alloys , 2009 .

[101]  Dietmar Werner Hutmacher,et al.  State of the art and future directions of scaffold‐based bone engineering from a biomaterials perspective , 2007, Journal of tissue engineering and regenerative medicine.

[102]  陈君,et al.  Electrochemical behavior of magnesium alloys in simulated body fluids , 2007 .

[103]  G. Song,et al.  Corrosion mechanisms of magnesium alloys , 1999 .

[104]  T. Park,et al.  Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[105]  R. K. Jetti,et al.  Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery. , 2007, International journal of pharmaceutics.

[106]  Takashi Inoue,et al.  Surface Modification by Dispersion of Hard Particles on Magnesium Alloy with Laser , 2000 .

[107]  Masato Suzuki,et al.  Solid-state polycondensation of natural aldopentoses and 6-deoxyaldohexoses. Facile preparation of highly branched polysaccharide , 2006 .

[108]  M. Kaga,et al.  Synthesis of SiO , 2014 .

[109]  G. Song,et al.  Stress corrosion cracking in magnesium alloys: Characterization and prevention , 2007 .

[110]  J.M.A. Lenihan,et al.  Biomechanics — Mechanical properties of living tissue , 1982 .

[111]  W. Saltzman,et al.  Polymers for tissue engineering , 1996 .

[112]  D. Howie,et al.  Variation in cytokines induced by particles from different prosthetic materials. , 1998, Clinical orthopaedics and related research.

[113]  Andreas Greiner,et al.  Progress in the Field of Electrospinning for Tissue Engineering Applications , 2009, Advanced materials.

[114]  R. Busk Magnesium Products Design , 1986 .

[115]  S. Hiromoto,et al.  High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution , 2009 .

[116]  C. Nawrot,et al.  A Chromatographic Study of the Relative Affinities of Rat Bone and Skin Collagen 1 Chains for Hydroxyapatite , 1977, Journal of dental research.

[117]  Guozhi Zhang,et al.  Controlling the biodegradation rate of magnesium using biomimetic apatite coating. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[118]  J. Pasteris,et al.  A mineralogical perspective on the apatite in bone , 2005 .

[119]  B. Denkena,et al.  Influence of Different Surface Machining Treatments of Magnesium‐based Resorbable Implants on the Degradation Behavior in Rabbits , 2009 .

[120]  Y. L. Wang,et al.  Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution , 2007 .

[121]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[122]  Yuquan Wei,et al.  Preparation of MPEG-PLA nanoparticle for honokiol delivery in vitro. , 2010, International journal of pharmaceutics.

[123]  J. Kruger,et al.  Corrosion of magnesium , 1993 .

[124]  G. Song Recent Progress in Corrosion and Protection of Magnesium Alloys , 2005 .

[125]  Antonios G Mikos,et al.  Biomimetic materials for tissue engineering. , 2003, Biomaterials.

[126]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[127]  S. R. Kim,et al.  Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. , 2003, Biomaterials.

[128]  A. Coombes,et al.  Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. , 2004, Biomaterials.

[129]  E. Wachtel,et al.  The structure of mineralized collagen fibrils. , 1989, Connective tissue research.

[130]  Frank Witte,et al.  Progress and Challenge for Magnesium Alloys as Biomaterials , 2008 .

[131]  D. Gentry Steele,et al.  The Anatomy and Biology of the Human Skeleton , 1988 .

[132]  Yang Song,et al.  Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. , 2010, Acta biomaterialia.

[133]  M. Jasty The Bone-Biomaterial Interface. , 1992 .

[134]  M. Sarntinoranont,et al.  Magnesium as a biodegradable and bioabsorbable material for medical implants , 2009 .

[135]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[136]  K. Kainer Verfahren und Produkte , 1997, HTM Journal of Heat Treatment and Materials.

[137]  R. Legeros,et al.  Properties of osteoconductive biomaterials: calcium phosphates. , 2002, Clinical orthopaedics and related research.

[138]  Andrej Atrens,et al.  A Critical Review of the Stress Corrosion Cracking (SCC) of Magnesium Alloys , 2005 .

[139]  G. Crini Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment , 2005 .

[140]  Ke Yang,et al.  In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application , 2008, Journal of materials science. Materials in medicine.

[141]  M. Alonso,et al.  Design of microencapsulated chitosan microspheres for colonic drug delivery. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[142]  Christian G'Sell,et al.  Deformation and damage upon stretching of degradable polymers (PLA and PCL) , 2005 .

[143]  M. Fiset,et al.  Characterization and performance of laser melted AZ91D and AM60B , 2001 .

[144]  M. Liszkowski,et al.  Enhanced growth of animal and human endothelial cells on biodegradable polymers. , 1999, Biochimica et biophysica acta.

[145]  H. Somekawa,et al.  Precipitation control of calcium phosphate on pure magnesium by anodization , 2008 .

[146]  G. Tang,et al.  Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid , 2007 .

[147]  S. A. El-Rahman Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). , 2003, Pharmacological research.

[148]  W. Müller,et al.  Magnesium and its Alloys as Degradable Biomaterials. Corrosion Studies Using Potentiodynamic and EIS Electrochemical Techniques , 2007 .

[149]  B J Messmer,et al.  Fibrin gel -- advantages of a new scaffold in cardiovascular tissue engineering. , 2001, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[150]  S. Diplas,et al.  Preliminary Corrosion Evaluation of Some Novel Bulk Electron Beam Evaporated Magnesium Alloys , 1998 .

[151]  W. Ke,et al.  Corrosion of Artificial Aged Magnesium Alloy AZ80 in 3.5 wt pct NaCl Solutions , 2009 .

[152]  F. Beckmann,et al.  In vivo corrosion and corrosion protection of magnesium alloy LAE442. , 2010, Acta biomaterialia.

[153]  Corrosion , 1941, Science.

[154]  M. Tomozawa,et al.  Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium , 2011 .

[155]  J. Jansen,et al.  Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. , 2007, Advanced drug delivery reviews.

[156]  T. Aizawa,et al.  Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution , 2001 .

[157]  R. Jethanandani The development and application of diamond-like carbon films , 1997 .

[158]  Lucila Aimo,et al.  Aluminium and lead: molecular mechanisms of brain toxicity , 2008, Archives of Toxicology.

[159]  Laurent Bozec,et al.  Mechanical properties of collagen fibrils. , 2007, Biophysical journal.

[160]  Ke Yang,et al.  Formation by ion plating of Ti-coating on pure Mg for biomedical applications , 2005 .

[161]  M. Wei,et al.  Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating , 2009 .

[162]  C. M. Agrawal Reconstructing the human body using biomaterials , 1998 .

[163]  Jiyoung M Dang,et al.  Natural polymers for gene delivery and tissue engineering. , 2006, Advanced drug delivery reviews.

[164]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[165]  Chenglong Liu,et al.  Corrosion resistance of titanium ion implanted AZ91 magnesium alloy , 2007 .

[166]  M. Qiao,et al.  Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. , 2005, International journal of pharmaceutics.

[167]  S. Kalita,et al.  Nanocrystalline calcium phosphate ceramics in biomedical engineering , 2007 .

[168]  Kathy K. Wang The use of titanium for medical applications in the USA , 1996 .

[169]  R. Parnas on the Microstructure , 2022 .

[170]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[171]  Corrosion Engineering,et al.  Corrosion engineering , 1979 .

[172]  Pamela Habibovic,et al.  Osteoinductive biomaterials—properties and relevance in bone repair , 2007, Journal of tissue engineering and regenerative medicine.

[173]  Y. Huang,et al.  Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium–calcium alloys , 2008 .

[174]  S. Feng,et al.  Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. , 2004, Biomaterials.

[175]  D. Commenges,et al.  Aluminum and silica in drinking water and the risk of Alzheimer's disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. , 2008, American journal of epidemiology.

[176]  I. Polmear,et al.  Magnesium alloys and applications , 1994 .

[177]  M. Fathi,et al.  Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications , 2010 .

[178]  E. Willbold,et al.  Biodegradable magnesium scaffolds: Part II: peri-implant bone remodeling. , 2007, Journal of biomedical materials research. Part A.

[179]  M. Schlesinger,et al.  Corrosion of magnesium and its alloys , 2009 .

[180]  H. Levitin The Chemical Dynamics of Bone Mineral , 1959, The Yale Journal of Biology and Medicine.

[181]  L. Rimondini,et al.  In vivo experimental study on bone regeneration in critical bone defects using an injectable biodegradable PLA/PGA copolymer. , 2005, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[182]  Fuzhai Cui,et al.  Surface Modifications of Magnesium Alloys for Biomedical Applications , 2011, Annals of Biomedical Engineering.

[183]  J. Bronzino,et al.  Biomaterials : Principles and Applications , 2002 .

[184]  Joseph Jagur-Grodzinski,et al.  Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies , 2006 .

[185]  C. Azevedo Failure analysis of a commercially pure titanium plate for osteosynthesis , 2003 .

[186]  A. Fekry,et al.  Electrochemistry and Impedance Studies on Titanium and Magnesium Alloys in Ringer’s Solution , 2011, International Journal of Electrochemical Science.

[187]  Yuebin B. Guo,et al.  Cutting mechanics in high speed dry machining of biomedical magnesium–calcium alloy using internal state variable plasticity model , 2011 .

[188]  James Frederick Young,et al.  Materials and processes , 1944 .

[189]  Stephen J. Weiss,et al.  A Pericellular Collagenase Directs the 3-Dimensional Development of White Adipose Tissue , 2006, Cell.

[190]  Berend Denkena,et al.  Biocompatible Magnesium Alloys as Absorbable Implant Materials – Adjusted Surface and Subsurface Properties by Machining Processes , 2007 .

[191]  U. Joos,et al.  Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. , 2004, Biomaterials.

[192]  Berend Denkena,et al.  Machining induced residual stress in structural aluminum parts , 2008, Prod. Eng..