An Evaluation of Machine Learning Algorithms To Detect Attacks in Scada Network
暂无分享,去创建一个
Mounir Rifi | Hicham Belhadaoui | Sara Tamy | Mahmoud Almostafa Rabbah | Nabila Rabbah | N. Rabbah | M. Rifi | M. Rabbah | H. Belhadaoui | Sara Tamy
[2] Karen A. Scarfone,et al. Guide to Industrial Control Systems (ICS) Security , 2015 .
[3] Igor Nai Fovino,et al. Critical State-Based Filtering System for Securing SCADA Network Protocols , 2012, IEEE Transactions on Industrial Electronics.
[4] Paola Zuccolotto,et al. Variable Selection Using Random Forests , 2006 .
[5] Sara Matzner,et al. An application of machine learning to network intrusion detection , 1999, Proceedings 15th Annual Computer Security Applications Conference (ACSAC'99).
[6] I. Maqsood,et al. Random Forests and Decision Trees , 2012 .
[7] Tina R. Patil,et al. Performance Analysis of Naive Bayes and J 48 Classification Algorithm for Data Classification , 2013 .
[8] Xinghuo Yu,et al. An unsupervised anomaly-based detection approach for integrity attacks on SCADA systems , 2014, Comput. Secur..
[9] Thomas J. Watson,et al. An empirical study of the naive Bayes classifier , 2001 .
[10] Vikramaditya R. Jakkula,et al. Tutorial on Support Vector Machine ( SVM ) , 2011 .
[11] Neelam Sharma,et al. INTRUSION DETECTION USING NAIVE BAYES CLASSIFIER WITH FEATURE REDUCTION , 2012 .
[12] Ulf Lindqvist,et al. Using Model-based Intrusion Detection for SCADA Networks , 2006 .
[13] Jean-Michel Poggi,et al. Variable selection using random forests , 2010, Pattern Recognit. Lett..
[14] R. Kaboré,et al. Revue des systèmes de détection d'anomalies dans les réseaux SCADA et attaques internes , 2017 .
[15] Leo Lebanov,et al. Random Forests machine learning applied to gas chromatography - Mass spectrometry derived average mass spectrum data sets for classification and characterisation of essential oils. , 2020, Talanta.