Regular and chaotic behaviour in an extensible pendulum
暂无分享,去创建一个
[1] Evans,et al. Superintegrability in classical mechanics. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[2] B. A. Aničin,et al. On the linear theory of the elastic pendulum , 1993 .
[3] N. Mukunda,et al. Classical Dynamics: A Modern Perspective , 1974 .
[4] H. Goldstein,et al. Classical Mechanics , 1951, Mathematical Gazette.
[5] M. Hénon,et al. The applicability of the third integral of motion: Some numerical experiments , 1964 .
[6] N. Mclachlan. Theory and Application of Mathieu Functions , 1965 .
[7] U. Smilansky,et al. Demonstration of classical chaotic scattering , 1991 .
[8] H. Yépez,et al. Chaos in a dripping faucet , 1989 .
[9] Rodolfo Cuerno,et al. Deterministic chaos in the elastic pendulum: A simple laboratory for nonlinear dynamics , 1992 .
[10] George Contopoulos,et al. On the existence of a third integral of motion , 1963 .
[11] H. N. Núñez-Yépez,et al. Onset of chaos in an extensible pendulum , 1990 .
[12] Donald L. Hitzl,et al. The swinging spring — Approximate analyses for low and very high energy, II , 1975 .
[13] E. Breitenberger,et al. The elastic pendulum: A nonlinear paradigm , 1981 .
[15] R. Broucke,et al. Periodic solutions of a spring-pendulum system , 1973 .