Control of Interneuron Firing by Subthreshold Synaptic Potentials in Principal Cells of the Dorsal Cochlear Nucleus

[1]  L. Trussell,et al.  Chemical synaptic transmission onto superficial stellate cells of the mouse dorsal cochlear nucleus. , 2014, Journal of neurophysiology.

[2]  L. Trussell,et al.  Regulation of interneuron excitability by gap junction coupling with principal cells , 2013, Nature Neuroscience.

[3]  G. Paxinos,et al.  The hyperpolarization‐activated non‐specific cation current (Ih) adjusts the membrane properties, excitability, and activity pattern of the giant cells in the rat dorsal cochlear nucleus , 2013, The European journal of neuroscience.

[4]  Li I. Zhang,et al.  Generation of Intensity Selectivity by Differential Synaptic Tuning: Fast-Saturating Excitation But Slow-Saturating Inhibition , 2012, The Journal of Neuroscience.

[5]  M. Carandini,et al.  Inhibition dominates sensory responses in awake cortex , 2012, Nature.

[6]  B. Sabatini,et al.  Transient Sodium Current at Subthreshold Voltages: Activation by EPSP Waveforms , 2012, Neuron.

[7]  P. Ascher,et al.  Mechanisms Shaping the Slow Nicotinic Synaptic Current at the Motoneuron–Renshaw Cell Synapse , 2012, The Journal of Neuroscience.

[8]  B. Doiron,et al.  Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal behavior in a population of dorsal cochlear nucleus pyramidal neurons. , 2012, Journal of neurophysiology.

[9]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[10]  L. Trussell,et al.  Molecular layer inhibitory interneurons provide feedforward and lateral inhibition in the dorsal cochlear nucleus. , 2010, Journal of neurophysiology.

[11]  Bernardo L. Sabatini,et al.  Competitive regulation of synaptic Ca influx by D2 dopamine and A2A adenosine receptors , 2010, Nature Neuroscience.

[12]  S. Cruikshank,et al.  Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex , 2007, Nature Neuroscience.

[13]  I. Aradi,et al.  Propagation of postsynaptic currents and potentials via gap junctions in GABAergic networks of the rat hippocampus , 2007, The Journal of physiology.

[14]  Hannah Monyer,et al.  Connexin36 Mediates Spike Synchrony in Olfactory Bulb Glomeruli , 2005, Neuron.

[15]  A. Pereda,et al.  Voltage-Dependent Enhancement of Electrical Coupling by a Subthreshold Sodium Current , 2004, The Journal of Neuroscience.

[16]  M. Bennett,et al.  Electrical Coupling and Neuronal Synchronization in the Mammalian Brain , 2004, Neuron.

[17]  Y Yarom,et al.  Electrotonic Coupling Interacts with Intrinsic Properties to Generate Synchronized Activity in Cerebellar Networks of Inhibitory Interneurons , 1999, The Journal of Neuroscience.

[18]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[19]  M. Christie,et al.  Electrical coupling synchronizes subthreshold activity in locus coeruleus neurons in vitro from neonatal rats , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  K K Osen,et al.  Stellate neurons in rat dorsal cochlear nucleus studied with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions , 1984, Journal of neurocytology.

[21]  J. Bower,et al.  Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. , 2007, Journal of neurophysiology.