Path tracing in production - part 1: production renderers

The last few years have seen a decisive move of the movie making industry towards rendering using physically-based methods, mostly implemented in terms of path tracing. Increasing demands on the realism of lighting, rendering and material modeling, paired with a working paradigm that very naturally models the behaviour of light like in the real world mean that more and more movies each year are created the physically-based way. This shift has also been recently recognised by the Academy of Motion Picture Arts and Sciences, which in this year's SciTech ceremony has awarded three ray tracing renderers for their crucial contribution to this move. While the language and toolkit available to the technical directors get closer and closer to natural language, an understanding of the techniques and algorithms behind the workings of the renderer of choice are still of fundamental importance to make efficient use of the available resources, especially when the hard-learned lessons and tricks from the previous world of rasterization-based rendering can introduce confusion and cause costly mistakes. In this course, the architectures and novel possibilities of the next generation of production renderers are introduced to a wide audience including technical directors, artists, and researchers. This is the first part of a two part course. While the first part focuses on architecture and implementation, the second one focuses on usage patterns and workflows.

[1]  Brent Burley Physically-Based Shading at Disney , 2012 .

[2]  Philipp Slusallek,et al.  Light transport simulation with vertex connection and merging , 2012, ACM Trans. Graph..

[3]  Carsten Dachsbacher,et al.  Physically Meaningful Rendering using Tristimulus Colours , 2015, Comput. Graph. Forum.

[4]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[5]  Ingo Wald,et al.  Embree: a kernel framework for efficient CPU ray tracing , 2014, ACM Trans. Graph..

[6]  Per H. Christensen,et al.  Ray Differentials and Multiresolution Geometry Caching for Distribution Ray Tracing in Complex Scenes , 2003, Comput. Graph. Forum.

[7]  Martin Hill,et al.  Eurographics Symposium on Rendering 2011 an Energy-conserving Hair Reflectance Model , 2022 .

[8]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[9]  Christopher D. Kulla,et al.  Production volume rendering: SIGGRAPH 2017 course , 2017, SIGGRAPH Courses.

[10]  Per H. Christensen,et al.  Multiresolution radiosity caching for global illumination in movies , 2012, SIGGRAPH Talks.

[11]  Dennis Couzin Optimal fluorescent colors , 2007 .

[12]  H. Friedrich,et al.  Ermakow, S. M., Die Monte-Carlo-Methode und verwandte Fragen. 291 S., Berlin 1975. VEB Deutscher Verlag der Wissenschaften. M 62,- , 1976 .

[13]  Carlos Ureña,et al.  Area‐Preserving Parameterizations for Spherical Ellipses , 2017, Comput. Graph. Forum.

[14]  Dan Piponi,et al.  Automatic Differentiation, C++ Templates, and Photogrammetry , 2004, J. Graphics, GPU, & Game Tools.

[15]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[16]  Brent Burley,et al.  Sorted Deferred Shading for Production Path Tracing , 2013, Comput. Graph. Forum.

[17]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[18]  M. H. Brill,et al.  How the CIE 1931 color-matching functions were derived from Wright-Guild data , 1997 .

[19]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[20]  Jaakko Lehtinen,et al.  Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering , 2015, Comput. Graph. Forum.

[21]  Jan Novák,et al.  Residual ratio tracking for estimating attenuation in participating media , 2014, ACM Trans. Graph..

[22]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[23]  Brent Burley,et al.  Practical and controllable subsurface scattering for production path tracing , 2016, SIGGRAPH Talks.

[24]  Andrew S. Glassner,et al.  An introduction to ray tracing , 1989 .

[25]  Per H. Christensen,et al.  An approximate reflectance profile for efficient subsurface scattering , 2015, SIGGRAPH Talks.

[26]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[27]  Jacopo Pantaleoni,et al.  A path space extension for robust light transport simulation , 2012, ACM Trans. Graph..

[28]  Homan Igehy,et al.  Tracing ray differentials , 1999, SIGGRAPH.

[29]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[30]  Peter Shirley,et al.  Physically based lighting calculations for computer graphics , 1991 .

[31]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[32]  Marcos Fajardo,et al.  Blue-noise dithered sampling , 2016, SIGGRAPH Talks.

[33]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[34]  Robert L. Cook,et al.  The Reyes image rendering architecture , 1987, SIGGRAPH.

[35]  H. Jensen,et al.  Progressive photon mapping , 2008, SIGGRAPH 2008.

[36]  Olga Sorkine-Hornung,et al.  Path‐space Motion Estimation and Decomposition for Robust Animation Filtering , 2015, Comput. Graph. Forum.

[37]  Christopher D. Kulla,et al.  BSSRDF importance sampling , 2013, SIGGRAPH '13.

[38]  Christopher D. Kulla,et al.  Eurographics Symposium on Rendering 2012 Importance Sampling Techniques for Path Tracing in Participating Media , 2022 .

[39]  Brian A. Barsky,et al.  Advanced Renderman: Creating CGI for Motion Pictures , 1999 .

[40]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, SIGGRAPH 2011.

[41]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, SIGGRAPH Courses.

[42]  Alexander Keller,et al.  Unbiased Global Illumination with Participating Media , 2008 .

[43]  Christophe Hery,et al.  Practical Illumination from Flames , 2013 .

[44]  Derek Nowrouzezahrai,et al.  Unifying points, beams, and paths in volumetric light transport simulation , 2014, ACM Trans. Graph..

[45]  Steve Marschner,et al.  Light scattering from human hair fibers , 2003, ACM Trans. Graph..

[46]  Jan Novák,et al.  Spectral and decomposition tracking for rendering heterogeneous volumes , 2017, ACM Trans. Graph..

[47]  Brian E. Smits An RGB-to-Spectrum Conversion for Reflectances , 1999, J. Graphics, GPU, & Game Tools.

[48]  Henrik Wann Jensen,et al.  An artist friendly hair shading system , 2010, SIGGRAPH 2010.

[49]  Jan Novák,et al.  Subdivision Next-Event Estimation for Path-Traced Subsurface Scattering , 2016, EGSR.

[50]  Johannes Hanika,et al.  Hero Wavelength Spectral Sampling , 2014, Comput. Graph. Forum.

[51]  D. L. Macadam Maximum Visual Efficiency of Colored Materials , 1935 .

[52]  Carlos Ureña,et al.  An Area‐Preserving Parametrization for Spherical Rectangles , 2013, Comput. Graph. Forum.

[53]  Peter Shirley Time complexity of Monte Carlo radiosity , 1992, Comput. Graph..

[54]  Erwin Schrödinger,et al.  Theorie der Pigmente von größter Leuchtkraft , 1920 .

[55]  Yves D. Willems,et al.  Path Differentials and Applications , 2001, Rendering Techniques.

[56]  Per H. Christensen,et al.  Photon Beam Diffusion: A Hybrid Monte Carlo Method for Subsurface Scattering , 2013, Comput. Graph. Forum.

[57]  Brent Burley,et al.  A Practical and Controllable Hair and Fur Model for Production Path Tracing , 2015, Comput. Graph. Forum.

[58]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .