Fully Automatic Spectral–Spatial Fuzzy Clustering Using an Adaptive Multiobjective Memetic Algorithm for Multispectral Imagery

Clustering of remote sensing imagery is a tough task due to the particular and complex structure of remote sensing images and the shortage of known information. In this paper, we propose a fully automatic spectral–spatial fuzzy clustering method using an adaptive multiobjective memetic algorithm (AMOMA) for multispectral remote sensing imagery. This approach is made up of two automatic layers: an automatic determination layer and an automatic clustering layer. The first layer seeks the optimal number of clusters through a self-adaptive differential evolution algorithm. The second layer then takes advantage of the AMOMA for spectral–spatial clustering using the optimal number of clusters. The knee point from the Pareto front is then selected through the angle-based method in every generation, and we then compare the knee points between generations to output the final optimal solution. The effectiveness of the proposed method is verified by the experimental results obtained with three remote sensing data sets.

[1]  Sanghamitra Bandyopadhyay,et al.  Satellite image classification using genetically guided fuzzy clustering with spatial information , 2005 .

[2]  Zhen Ji,et al.  Affinity propagation based memetic band selection on hyperspectral imagery datasets , 2010, IEEE Congress on Evolutionary Computation.

[3]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[4]  Aly A. Farag,et al.  A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data , 2002, IEEE Transactions on Medical Imaging.

[5]  C. A. Murthy,et al.  In search of optimal clusters using genetic algorithms , 1996, Pattern Recognit. Lett..

[6]  Amin Alizadeh Naeini,et al.  Improving the Dynamic Clustering of Hyperspectral Data Based on the Integration of Swarm Optimization and Decision Analysis , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  Jon Atli Benediktsson,et al.  Spectral–Spatial Classification of Hyperspectral Data Based on a Stochastic Minimum Spanning Forest Approach , 2012, IEEE Transactions on Image Processing.

[8]  Licheng Jiao,et al.  A Sparse Spectral Clustering Framework via Multiobjective Evolutionary Algorithm , 2016, IEEE Transactions on Evolutionary Computation.

[9]  Xin Yao,et al.  An Evolutionary Multiobjective Approach to Sparse Reconstruction , 2014, IEEE Transactions on Evolutionary Computation.

[10]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[11]  Erzsébet Merényi,et al.  A Validity Index for Prototype-Based Clustering of Data Sets With Complex Cluster Structures , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  Hussein A. Abbass,et al.  Robustness Against the Decision-Maker's Attitude to Risk in Problems With Conflicting Objectives , 2012, IEEE Transactions on Evolutionary Computation.

[13]  Ujjwal Maulik,et al.  SVMeFC: SVM Ensemble Fuzzy Clustering for Satellite Image Segmentation , 2012, IEEE Geoscience and Remote Sensing Letters.

[14]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[15]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[17]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[18]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[19]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[20]  Ye Tian,et al.  A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[21]  John Aravindhar,et al.  A Hybrid Approach of Memetic and Bees Life Algorithm for Multiobjective Workflow Scheduling in Cloud , 2017 .

[22]  Arya K. Bhattacharya,et al.  Parallel differential evolution approach for cloud workflow placements under simultaneous optimization of multiple objectives , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[23]  Jens Jäkel,et al.  A New Convergence Proof of Fuzzy c-Means , 2005, IEEE Trans. Fuzzy Syst..

[24]  Yanfei Zhong,et al.  A New Fuzzy Clustering Algorithm Based on Clonal Selection for Land Cover Classification , 2011 .

[25]  Maoguo Gong,et al.  Natural and Remote Sensing Image Segmentation Using Memetic Computing , 2010, IEEE Computational Intelligence Magazine.

[26]  S. Bandyopadhyay,et al.  Nonparametric genetic clustering: comparison of validity indices , 2001, IEEE Trans. Syst. Man Cybern. Syst..

[27]  Jon Atli Benediktsson,et al.  Multiple Spectral–Spatial Classification Approach for Hyperspectral Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[29]  José Alfredo Ferreira Costa,et al.  Land-Cover Classification Using Self-Organizing Maps Clustered with Spectral and Spatial Information , 2011 .

[30]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[31]  V. Pareto,et al.  Vilfredo Pareto. Cours d’Économie Politique , 1897 .

[32]  Ujjwal Maulik,et al.  A new multi-objective technique for differential fuzzy clustering , 2011, Appl. Soft Comput..

[33]  Satyasai Jagannath Nanda,et al.  A Grey Wolf Optimizer Based Automatic Clustering Algorithm for Satellite Image Segmentation , 2017 .

[34]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[35]  Ujjwal Maulik,et al.  Automatic Fuzzy Clustering Using Modified Differential Evolution for Image Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Ujjwal Maulik,et al.  Unsupervised Pixel Classification in Satellite Imagery Using Multiobjective Fuzzy Clustering Combined With SVM Classifier , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Ujjwal Maulik,et al.  Multiobjective Genetic Clustering for Pixel Classification in Remote Sensing Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Amit Konar,et al.  Automatic image pixel clustering with an improved differential evolution , 2009, Appl. Soft Comput..

[39]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[40]  C. Bong,et al.  Multiobjective clustering with metaheuristic: current trends and methods in image segmentation , 2012 .

[41]  A. E. Eiben,et al.  From evolutionary computation to the evolution of things , 2015, Nature.

[42]  Liangpei Zhang,et al.  Evolutionary Computation Theory for Remote Sensing Image Clustering: A Survey , 2017, SEAL.

[43]  Daoqiang Zhang,et al.  Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[44]  Zexuan Zhu,et al.  Computational intelligence in optical remote sensing image processing , 2018, Appl. Soft Comput..

[45]  Ajith Abraham,et al.  Automatic Clustering Using a Synergy of Genetic Algorithm and Multi-objective Differential Evolution , 2009, HAIS.

[46]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[47]  M. Pal,et al.  Random forests for land cover classification , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[48]  Farid Melgani,et al.  Clustering of Hyperspectral Images Based on Multiobjective Particle Swarm Optimization , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Liangpei Zhang,et al.  An Adaptive Memetic Fuzzy Clustering Algorithm With Spatial Information for Remote Sensing Imagery , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[50]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[51]  Liangpei Zhang,et al.  Adaptive Multiobjective Memetic Fuzzy Clustering Algorithm for Remote Sensing Imagery , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Sanghamitra Bandyopadhyay Genetic algorithms for clustering and fuzzy clustering , 2011, Wiley Interdiscip. Rev. Data Min. Knowl. Discov..

[53]  Ujjwal Maulik,et al.  A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification , 2005, Fuzzy Sets Syst..

[54]  Dervis Karaboga,et al.  Dynamic clustering with improved binary artificial bee colony algorithm , 2015, Appl. Soft Comput..

[55]  Josphat Igadwa Mwasiagi,et al.  Self Organizing Maps - Applications and Novel Algorithm Design , 2011 .

[56]  Liang Feng,et al.  A self-adaptive memeplexes robust search scheme for solving stochastic demands vehicle routing problem , 2012, Int. J. Syst. Sci..

[57]  Antonio Iodice,et al.  Feature Extraction From Multitemporal SAR Images Using Selforganizing Map Clustering and Object-Based Image Analysis , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[58]  Liangpei Zhang,et al.  Adaptive Differential Evolution Fuzzy Clustering Algorithm with Spatial Information and Kernel Metric for Remote Sensing Imagery , 2013, IDEAL.

[59]  Maoguo Gong,et al.  Memetic algorithm based feature selection for hyperspectral images classification , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[60]  Kay Chen Tan,et al.  A Multi-Facet Survey on Memetic Computation , 2011, IEEE Transactions on Evolutionary Computation.

[61]  Lorenzo Bruzzone,et al.  A Novel SOM-SVM-Based Active Learning Technique for Remote Sensing Image Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.