Randomized core reduction for discrete ill-posed problem

In this paper, we apply randomized algorithms to approximate the total least squares (TLS) solution of the problem $Ax\approx b$ in the large-scale discrete ill-posed problems. A regularization technique, based on the multiplicative randomization and the subspace iteration, is proposed to obtain the approximate core problem.In the error analysis, we provide upper bounds %in terms of the $(k\!\!+\!\!1)$-th singular value of $A$ for the errors of the solution and the residual of the randomized core reduction. Illustrative numerical examples and comparisons are presented.

[1]  Xue-Feng Wang,et al.  Total least squares problem with the arbitrary unitarily invariant norms , 2017 .

[2]  P. Wedin Perturbation theory for pseudo-inverses , 1973 .

[3]  David P. Woodruff Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..

[4]  Sabine Van Huffel,et al.  The Total Least Squares Problem in AX ≈ B: A New Classification with the Relationship to the Classical Works , 2011, SIAM J. Matrix Anal. Appl..

[5]  Zhongxiao Jia,et al.  Modified truncated randomized singular value decomposition (MTRSVD) algorithms for large scale discrete ill-posed problems with general-form regularization , 2017, 1708.01722.

[6]  Peter K. Kitanidis,et al.  Randomized algorithms for generalized Hermitian eigenvalue problems with application to computing Karhunen–Loève expansion , 2013, Numer. Linear Algebra Appl..

[7]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.

[8]  H. Voss,et al.  Solving regularized total least squares problems based on eigenproblems , 2010 .

[9]  Yimin Wei,et al.  Condition numbers of the multidimensional total least squares problems having more than one solution , 2017, Numerical Algorithms.

[10]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[11]  R. Larsen Lanczos Bidiagonalization With Partial Reorthogonalization , 1998 .

[12]  A. Deif Sensitivity analysis in linear systems , 1986 .

[13]  Mark Tygert,et al.  A Fast Randomized Algorithm for Orthogonal Projection , 2009, SIAM J. Sci. Comput..

[14]  Ning Zheng,et al.  Modulus-based iterative methods for constrained Tikhonov regularization , 2017, J. Comput. Appl. Math..

[15]  S. Muthukrishnan,et al.  Faster least squares approximation , 2007, Numerische Mathematik.

[16]  Z. Strakos,et al.  THE CORE PROBLEM WITHIN A LINEAR APPROXIMATION PROBLEM AX ≈ B WITH MULTIPLE RIGHT-HAND SIDES∗ , 2012 .

[17]  Dianne P. O'Leary,et al.  Blind Deconvolution Using a Regularized Structured Total Least Norm Algorithm , 2002, SIAM J. Matrix Anal. Appl..

[18]  Serge Gratton,et al.  A Contribution to the Conditioning of the Total Least-Squares Problem , 2010, SIAM J. Matrix Anal. Appl..

[19]  Siam J. Sci,et al.  SUBSPACE ITERATION RANDOMIZATION AND SINGULAR VALUE PROBLEMS , 2015 .

[20]  Per Christian Hansen,et al.  Regularization Tools version 4.0 for Matlab 7.3 , 2007, Numerical Algorithms.

[21]  Zdenek Strakos,et al.  Core Problems in Linear Algebraic Systems , 2005, SIAM J. Matrix Anal. Appl..

[22]  Zdenek Strakos,et al.  Band Generalization of the Golub-Kahan Bidiagonalization, Generalized Jacobi Matrices, and the Core Problem , 2015, SIAM J. Matrix Anal. Appl..

[23]  Sivan Toledo,et al.  Blendenpik: Supercharging LAPACK's Least-Squares Solver , 2010, SIAM J. Sci. Comput..

[24]  Hua Xiang,et al.  Statistical Condition Estimates and Randomized Algorithms for Large-Scale Total Least Squares Problems , 2014 .

[25]  Gene H. Golub,et al.  Matrix computations , 1983 .

[26]  Michael A. Saunders,et al.  LSRN: A Parallel Iterative Solver for Strongly Over- or Underdetermined Systems , 2011, SIAM J. Sci. Comput..

[27]  Diana Maria Sima,et al.  Solvability of the Core Problem with Multiple Right-Hand Sides in the TLS Sense , 2016, SIAM J. Matrix Anal. Appl..

[28]  Iveta Hnětynková,et al.  TLS formulation and core reduction for problems with structured right-hand sides , 2018, Linear Algebra and its Applications.

[29]  Hua Xiang,et al.  Randomized algorithms for total least squares problems , 2018, Numerical Linear Algebra with Applications.

[30]  Hua Xiang,et al.  Regularization with randomized SVD for large-scale discrete inverse problems , 2013 .

[31]  R. C. Thompson Principal submatrices IX: Interlacing inequalities for singular values of submatrices , 1972 .

[32]  Pinar Heggernes,et al.  Methods for Large Scale Total Least Squares Problems , 2000, SIAM J. Matrix Anal. Appl..

[33]  Delin Chu,et al.  A Fast Frequent Directions Algorithm for Low Rank Approximation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Per Christian Hansen,et al.  IR Tools: a MATLAB package of iterative regularization methods and large-scale test problems , 2017, Numerical Algorithms.

[35]  Hua Xiang,et al.  Randomized algorithms for large-scale inverse problems with general Tikhonov regularizations , 2015 .

[36]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[37]  Peter Richtárik,et al.  Randomized Iterative Methods for Linear Systems , 2015, SIAM J. Matrix Anal. Appl..

[38]  C. Chui,et al.  Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .

[39]  Zdeněk Strakoš,et al.  Lanczos tridiagonalization and core problems , 2007 .

[40]  Dmitri A. Rachkovskij,et al.  A randomized method for solving discrete ill-posed problems , 2012 .

[41]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[42]  V. Rokhlin,et al.  A fast randomized algorithm for the approximation of matrices ✩ , 2007 .

[43]  J. Bunch,et al.  Collinearity and Total Least Squares , 1994, SIAM J. Matrix Anal. Appl..

[44]  V. Rokhlin,et al.  A fast randomized algorithm for overdetermined linear least-squares regression , 2008, Proceedings of the National Academy of Sciences.

[45]  Zdenek Strakos,et al.  The Core Problem within a Linear Approximation Problem $AX\approx B$ with Multiple Right-Hand Sides , 2013, SIAM J. Matrix Anal. Appl..

[46]  V. Rokhlin,et al.  A randomized algorithm for the approximation of matrices , 2006 .

[47]  Yimin Wei,et al.  Tikhonov Regularization and Randomized GSVD , 2016, SIAM J. Matrix Anal. Appl..

[48]  Gene H. Golub,et al.  Regularization by Truncated Total Least Squares , 1997, SIAM J. Sci. Comput..