MetalDetector v2.0: predicting the geometry of metal binding sites from protein sequence

MetalDetector identifies CYS and HIS involved in transition metal protein binding sites, starting from sequence alone. A major new feature of release 2.0 is the ability to predict which residues are jointly involved in the coordination of the same metal ion. The server is available at http://metaldetector.dsi.unifi.it/v2.0/.

[1]  M. R. Chance,et al.  Metallomics and metalloproteomics , 2008, Cellular and Molecular Life Sciences.

[3]  Michael Sullivan,et al.  Metalloproteomics: high-throughput structural and functional annotation of proteins in structural genomics. , 2005, Structure.

[4]  Gökhan BakIr,et al.  Predicting Structured Data , 2008 .

[5]  J. S. Sodhi,et al.  Predicting metal-binding site residues in low-resolution structural models. , 2004, Journal of molecular biology.

[6]  Ronen Levy,et al.  Prediction of 3D metal binding sites from translated gene sequences based on remote‐homology templates , 2009, Proteins.

[7]  Thomas Hofmann,et al.  Predicting Structured Data (Neural Information Processing) , 2007 .

[8]  Peter Clote,et al.  DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification , 2006, Nucleic Acids Res..

[9]  H. Sigel,et al.  Handbook on Metalloproteins , 2001 .

[10]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[11]  B. Rost,et al.  Identifying cysteines and histidines in transition‐metal‐binding sites using support vector machines and neural networks , 2006, Proteins.

[12]  Jessica C. Ebert,et al.  Robust recognition of zinc binding sites in proteins , 2007, Protein science : a publication of the Protein Society.

[13]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[14]  Ben Taskar,et al.  Learning structured prediction models: a large margin approach , 2005, ICML.

[15]  Bernhard Schölkopf,et al.  Kernel Dependency Estimation , 2002, NIPS.

[16]  Xiaohua Li,et al.  Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. , 2002, Bipolar disorders.

[17]  Lothar Rink,et al.  Zinc homeostasis in aging: two elusive faces of the same "metal". , 2006, Rejuvenation research.

[18]  Henry D. Shapiro,et al.  An Exact Characterization of Greedy Structures , 1993, IPCO.

[19]  Jason Weston,et al.  Fast Kernel Classifiers with Online and Active Learning , 2005, J. Mach. Learn. Res..

[20]  Daniel Marcu,et al.  Learning as search optimization: approximate large margin methods for structured prediction , 2005, ICML.

[21]  Kirill Degtyarenko,et al.  Bioinorganic motifs: towards functional classification of metalloproteins , 2000, Bioinform..

[22]  Burkhard Rost,et al.  MetalDetector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence , 2008, Bioinform..

[23]  Gail J. Bartlett,et al.  Analysis of catalytic residues in enzyme active sites. , 2002, Journal of molecular biology.

[24]  Nanjiang Shu,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm618 Sequence analysis Prediction of zinc-binding sites in proteins from sequence , 2008 .

[25]  Burkhard Rost,et al.  UniqueProt: creating representative protein sequence sets , 2003, Nucleic Acids Res..

[26]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[27]  Paola Irato,et al.  Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. , 2007, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[28]  Ivano Bertini,et al.  Bioinformatics in bioinorganic chemistry. , 2010, Metallomics : integrated biometal science.

[29]  V. Sobolev,et al.  Prediction of transition metal‐binding sites from apo protein structures , 2007, Proteins.

[30]  Christian J. A. Sigrist,et al.  Nucleic Acids Research Advance Access published November 14, 2007 The 20 years of PROSITE , 2007 .

[31]  P. Frasconi,et al.  Predicting zinc binding at the proteome level , 2007, BMC Bioinformatics.