Parallel Private Retrieval of Merkle Proofs via Tree Colorings

Motivated by a practical scenario in blockchains in which a client, who possesses a transaction, wishes to privately verify that the transaction actually belongs to a block, we investigate the problem of private retrieval of Merkle proofs (i.e. proofs of inclusion/membership) in a Merkle tree. In this setting, one or more servers store the nodes of a binary tree (a Merkle tree), while a client wants to retrieve the set of nodes along a root-to-leaf path (i.e. a Merkle proof, after appropriate node swapping operations), without letting the servers know which path is being retrieved. We propose a method that partitions the Merkle tree to enable parallel private retrieval of the Merkle proofs. The partitioning step is based on a novel tree coloring called ancestral coloring in which nodes that have ancestor-descendant relationship must have distinct colors. To minimize the retrieval time, the coloring is required to be balanced, i.e. the sizes of the color classes differ by at most one. We develop a fast algorithm to find a balanced (in fact, any) ancestral coloring in almost linear time in the number of tree nodes, which can handle trees with billions of nodes in a few minutes. Our partitioning method can be applied on top of any private information retrieval scheme, leading to the minimum storage overhead and fastest running times compared to existing approaches.

[1]  Ling Ren,et al.  Vectorized Batch Private Information Retrieval , 2023, 2023 IEEE Symposium on Security and Privacy (SP).

[2]  Son Hoang Dau,et al.  k-server Byzantine-Resistant PIR Scheme with Optimal Download Rate and Optimal File Size , 2023, 2023 IEEE International Symposium on Information Theory (ISIT).

[3]  Son Hoang Dau,et al.  Committed Private Information Retrieval , 2023, ArXiv.

[4]  Son Hoang Dau,et al.  Two-Server Private Information Retrieval with Optimized Download Rate and Result Verification , 2023, 2023 IEEE International Symposium on Information Theory (ISIT).

[5]  Alex Davidson,et al.  FrodoPIR: Simple, Scalable, Single-Server Private Information Retrieval , 2023, IACR Cryptol. ePrint Arch..

[6]  L. Zhang,et al.  Two-Server Private Information Retrieval with Result Verification , 2022, 2022 IEEE International Symposium on Information Theory (ISIT).

[7]  Ravital Solomon,et al.  SoK: Privacy-Preserving Computing in the Blockchain Era , 2022, 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P).

[8]  Huaxiong Wang,et al.  Multi-Server Verifiable Computation of Low-Degree Polynomials , 2022, 2022 IEEE Symposium on Security and Privacy (SP).

[9]  Liang Zhao,et al.  Verifiable single-server private information retrieval from LWE with binary errors , 2021, Inf. Sci..

[10]  Henry Corrigan-Gibbs,et al.  Private Information Retrieval with Sublinear Online Time , 2020, IACR Cryptol. ePrint Arch..

[11]  Jorge Bernal Bernabe,et al.  Privacy-Preserving Solutions for Blockchain: Review and Challenges , 2019, IEEE Access.

[12]  Danilo Gligoroski,et al.  SoK of Used Cryptography in Blockchain , 2019, IEEE Access.

[13]  Daniel Kales,et al.  Revisiting User Privacy for Certificate Transparency , 2019, 2019 IEEE European Symposium on Security and Privacy (EuroS&P).

[14]  Srinath T. V. Setty,et al.  PIR with Compressed Queries and Amortized Query Processing , 2018, 2018 IEEE Symposium on Security and Privacy (SP).

[15]  Sennur Ulukus,et al.  Multi-Message Private Information Retrieval: Capacity Results and Near-Optimal Schemes , 2017, IEEE Transactions on Information Theory.

[16]  Srinath T. V. Setty,et al.  Unobservable Communication over Fully Untrusted Infrastructure , 2016, OSDI.

[17]  Yuval Ishai,et al.  Function Secret Sharing: Improvements and Extensions , 2016, CCS.

[18]  Marc-Olivier Killijian,et al.  XPIR : Private Information Retrieval for Everyone , 2016, Proc. Priv. Enhancing Technol..

[19]  S. Jafar,et al.  The Capacity of Private Information Retrieval , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[20]  Yuval Ishai,et al.  Function Secret Sharing , 2015, EUROCRYPT.

[21]  Ian Goldberg,et al.  Sublinear Scaling for Multi-Client Private Information Retrieval , 2015, Financial Cryptography.

[22]  Alexandros G. Dimakis,et al.  Batch codes through dense graphs without short cycles , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[23]  Reihaneh Safavi-Naini,et al.  Verifiable Multi-server Private Information Retrieval , 2014, ACNS.

[24]  Yuval Ishai,et al.  Distributed Point Functions and Their Applications , 2014, EUROCRYPT.

[25]  Ian Goldberg,et al.  Optimally Robust Private Information Retrieval , 2012, USENIX Security Symposium.

[26]  Werner Vogels,et al.  Dynamo: amazon's highly available key-value store , 2007, SOSP.

[27]  Ian Goldberg,et al.  Improving the Robustness of Private Information Retrieval , 2007 .

[28]  David P. Woodruff,et al.  A geometric approach to information-theoretic private information retrieval , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[29]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[30]  Amos Beimel,et al.  Robust Information-Theoretic Private Information Retrieval , 2002, Journal of Cryptology.

[31]  Jie Xu,et al.  Private information retrieval in the presence of malicious failures , 2002, Proceedings 26th Annual International Computer Software and Applications.

[32]  Rasmus Pagh,et al.  Cuckoo Hashing , 2001, Encyclopedia of Algorithms.

[33]  Yuval Ishai,et al.  Information-Theoretic Private Information Retrieval: A Unified Construction , 2001, ICALP.

[34]  Venkatesan Guruswami,et al.  Combinatorial feature selection problems , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[35]  Silvio Micali,et al.  Computationally Private Information Retrieval with Polylogarithmic Communication , 1999, EUROCRYPT.

[36]  Rafail Ostrovsky,et al.  Replication is not needed: single database, computationally-private information retrieval , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[37]  Eyal Kushilevitz,et al.  Private information retrieval , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[38]  Ralph C. Merkle,et al.  A Digital Signature Based on a Conventional Encryption Function , 1987, CRYPTO.

[39]  Burton H. Bloom,et al.  Space/time trade-offs in hash coding with allowable errors , 1970, CACM.

[40]  V. Strassen Gaussian elimination is not optimal , 1969 .

[41]  D. R. Fulkerson,et al.  EDGE COLORINGS IN BIPARTITE GRAPHES , 1966 .

[42]  L. Zhang,et al.  Private Information Retrieval with Result Verification for More Servers , 2023, ACNS.

[43]  David J. Wu,et al.  Authenticated private information retrieval , 2023, IACR Cryptol. ePrint Arch..

[44]  Y. Kalai,et al.  Verifiable Private Information Retrieval , 2022, IACR Cryptol. ePrint Arch..

[45]  Changlu Lin,et al.  Post-Quantum Cheating Detectable Private Information Retrieval , 2022, SEC.

[46]  Asra Ali,et al.  Communication-Computation Trade-offs in PIR , 2019, IACR Cryptol. ePrint Arch..

[47]  Daniel Davis Wood ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER , 2014 .

[48]  Douglas R. Stinson,et al.  Combinatorial batch codes , 2009, Adv. Math. Commun..

[49]  Camino Balbuena,et al.  A construction of small regular bipartite graphs of girth 8 , 2009 .

[50]  S. Nakamoto,et al.  Bitcoin: A Peer-to-Peer Electronic Cash System , 2008 .

[51]  Bart Preneel,et al.  Hash functions , 2005, Encyclopedia of Cryptography and Security.

[52]  Ko-Wei Lih,et al.  Equitable Coloring of Graphs , 1998 .

[53]  D. de Werra,et al.  Some uses of hypergraphs in timetabling , 1985 .

[54]  Ingram Olkin,et al.  Inequalities: Theory of Majorization and Its Application , 1979 .