Computable fixpoints in well-structured symbolic model checking

We prove a general finite-time convergence theorem for fixpoint expressions over a well-quasi-ordered set. This has immediate applications for the verification of well-structured systems, where a main issue is the computability of fixpoint expressions, and in particular for game-theoretical properties and probabilistic systems where nesting and alternation of least and greatest fixpoints are common.

[1]  Christel Baier,et al.  Validation of Stochastic Systems: A Guide to Current Research (Lecture Notes in Computer Science) , 2004 .

[2]  Sophie Pinchinat,et al.  Verification of gap-order constraint abstractions of counter systems , 2014, Theor. Comput. Sci..

[3]  Christel Baier,et al.  A note on the attractor-property of infinite-state Markov chains , 2006, Inf. Process. Lett..

[4]  Parosh Aziz Abdulla,et al.  Verification of probabilistic systems with faulty communication , 2005, Inf. Comput..

[5]  Patrice Godefroid,et al.  Symbolic Verification of Communication Protocols with Infinite State Spaces using QDDs , 1999, Formal Methods Syst. Des..

[6]  Nathalie Bertrand,et al.  Solving Stochastic Büchi Games on Infinite Decisive Arenas , 2012, QAPL.

[7]  Pierre Wolper,et al.  Iterating Transducers in the Large (Extended Abstract) , 2003, CAV.

[8]  Philippe Schnoebelen,et al.  Flat Acceleration in Symbolic Model Checking , 2005, ATVA.

[9]  I. Rival Graphs and Order , 1985 .

[10]  Philippe Schnoebelen,et al.  Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma , 2010, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[11]  Artur Jez,et al.  Representing Hyper-arithmetical Sets by Equations over Sets of Integers , 2011, Theory of Computing Systems.

[12]  Jan van Leeuwen,et al.  Effective constructions in well-partially- ordered free monoids , 1978, Discret. Math..

[13]  Richard Mayr Undecidable problems in unreliable computations , 2003, Theor. Comput. Sci..

[14]  Bernard Boigelot,et al.  On iterating linear transformations over recognizable sets of integers , 2003, Theor. Comput. Sci..

[15]  Philippe Schnoebelen,et al.  On termination and invariance for faulty channel machines , 2012, Formal Aspects of Computing.

[16]  Jean-François Raskin,et al.  Petri Games are Monotonic but Difficult to Decide ⋆ , 2000 .

[17]  Anil Nerode,et al.  Automatic Presentations of Structures , 1994, LCC.

[18]  Philippe Schnoebelen,et al.  A general approach to comparing infinite-state systems with their finite-state specifications , 2006, Theor. Comput. Sci..

[19]  Christel Baier,et al.  Establishing Qualitative Properties for Probabilistic Lossy Channel Systems: An Algorithmic Approach , 1999, ARTS.

[20]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[21]  Parosh Aziz Abdulla,et al.  Stochastic Games with Lossy Channels , 2008, FoSSaCS.

[22]  Christel Baier,et al.  Principles of Model Checking (Representation and Mind Series) , 2008 .

[23]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[24]  Rüdiger Valk Self-Modifying Nets, a Natural Extension of Petri Nets , 1978, ICALP.

[25]  E. C. Milner Basic WQO- and BQO-Theory , 1985 .

[26]  Giorgio Delzanno,et al.  Covering sharing trees: a compact data structure for parameterized verification , 2004, International Journal on Software Tools for Technology Transfer.

[27]  Parosh Aziz Abdulla,et al.  Verifying programs with unreliable channels , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[28]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[29]  Nikolay V. Shilov,et al.  Model checking /spl mu/-calculus in well-structured transition systems , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[30]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[31]  Christel Baier,et al.  Principles of model checking , 2008 .

[32]  Karlis Cerans,et al.  Deciding Properties of Integral Relational Automata , 1994, ICALP.

[33]  Philippe Schnoebelen,et al.  The Verification of Probabilistic Lossy Channel Systems , 2004, Validation of Stochastic Systems.

[34]  Parosh Aziz Abdulla,et al.  A Survey of Regular Model Checking , 2004, CONCUR.

[35]  Pierre Wolper,et al.  Omega-Regular Model Checking , 2004, TACAS.

[36]  Philippe Schnoebelen Bisimulation and Other Undecidable Equivalences for Lossy Channel Systems , 2001, TACS.

[37]  Stéphane Demri,et al.  LTL with the Freeze Quantifier and Register Automata , 2006, LICS.

[38]  Philippe Schnoebelen,et al.  Reset Nets Between Decidability and Undecidability , 1998, ICALP.

[39]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[40]  Marcus Nilsson,et al.  Regular Model Checking , 2000, CAV.

[41]  Philippe Schnoebelen,et al.  The Ordinal Recursive Complexity of Lossy Channel Systems , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[42]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[43]  Thomas A. Henzinger,et al.  Symbolic Algorithms for Infinite-State Games , 2001, CONCUR.

[44]  Anna Philippou,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2018, Lecture Notes in Computer Science.

[45]  Petr Jancar Undecidability of Bisimilarity for Petri Nets and Some Related Problems , 1995, Theor. Comput. Sci..

[46]  Jérôme Leroux,et al.  TaPAS: The Talence Presburger Arithmetic Suite , 2009, TACAS.

[47]  Dick H. J. Jongh,et al.  Well-partial orderings and hierarchies , 1977 .

[48]  Tomás Vojnar,et al.  Regular Model Checking Using Inference of Regular Languages , 2004, INFINITY.

[49]  Pierre McKenzie,et al.  A well-structured framework for analysing petri net extensions , 2004, Inf. Comput..

[50]  Philippe Schnoebelen,et al.  Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset Petri Nets , 2010, MFCS.

[51]  Philippe Schnoebelen,et al.  Lossy Counter Machines Decidability Cheat Sheet , 2010, RP.

[52]  Joseph B. Kruskal,et al.  The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.

[53]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[54]  Jean-François Raskin,et al.  Games for Counting Abstractions , 2005, AVoCS.

[55]  Alain Finkel,et al.  Unreliable Channels are Easier to Verify Than Perfect Channels , 1996, Inf. Comput..

[56]  Parosh Aziz Abdulla,et al.  Algorithmic Analysis of Programs with Well Quasi-ordered Domains , 2000, Inf. Comput..

[57]  Parosh Aziz Abdulla,et al.  Handling Global Conditions in Parameterized System Verification , 1999, CAV.

[58]  Parosh Aziz Abdulla,et al.  Deciding Monotonic Games , 2003, CSL.

[59]  Amir Pnueli,et al.  Symbolic model checking with rich assertional languages , 2001, Theor. Comput. Sci..

[60]  Amir Pnueli,et al.  Symbolic Model Checking with Rich ssertional Languages , 1997, CAV.

[61]  R. V. Glabbeek The Linear Time - Branching Time Spectrum II: The Semantics of Sequential Systems with Silent Moves , 1993 .

[62]  Ahmed Bouajjani,et al.  Abstract Regular Model Checking , 2004, CAV.

[63]  William I. Gasarch,et al.  The Complexity of Finding SUBSEQ(A) , 2009, Theory of Computing Systems.

[64]  A. Arnold,et al.  Rudiments of μ-calculus , 2001 .

[65]  Philippe Schnoebelen,et al.  Multiply-Recursive Upper Bounds with Higman's Lemma , 2011, ICALP.

[66]  Wolfgang Reisig,et al.  Lectures on Petri Nets I: Basic Models , 1996, Lecture Notes in Computer Science.

[67]  Thomas A. Henzinger,et al.  A classification of symbolic transition systems , 2000, TOCL.

[68]  Martin Kutrib,et al.  More on the Size of Higman-Haines Sets: Effective Constructions , 2007, MCU.

[69]  Jean Goubault-Larrecq,et al.  Forward analysis for WSTS, part I: completions , 2009, Mathematical Structures in Computer Science.

[70]  Pierre Wolper,et al.  Verifying Systems with Infinite but Regular State Spaces , 1998, CAV.

[71]  Philippe Schnoebelen,et al.  The Ordinal-Recursive Complexity of Timed-arc Petri Nets, Data Nets, and Other Enriched Nets , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[72]  Alexander Moshe Rabinovich,et al.  Quantitative Analysis of Probabilistic Lossy Channel Systems , 2003, ICALP.

[73]  Faron Moller,et al.  Petri Nets and Regular Processes , 1999, J. Comput. Syst. Sci..

[74]  Javier Esparza,et al.  Decidability and Complexity of Petri Net Problems - An Introduction , 1996, Petri Nets.

[75]  Christel Baier,et al.  On Computing Fixpoints in Well-Structured Regular Model Checking, with Applications to Lossy Channel Systems , 2006, LPAR.

[76]  Patrick Cousot,et al.  Verification by Abstract Interpretation , 2003, Verification: Theory and Practice.

[77]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1999 .

[78]  Diego Figueira,et al.  Future-Looking Logics on Data Words and Trees , 2009, MFCS.

[79]  R. V. Glabbeek CHAPTER 1 – The Linear Time - Branching Time Spectrum I.* The Semantics of Concrete, Sequential Processes , 2001 .

[80]  Patricia Bouyer,et al.  Robust Analysis of Timed Automata via Channel Machines , 2008, FoSSaCS.

[81]  Parosh Aziz Abdulla,et al.  Simulating perfect channels with probabilistic lossy channels , 2005, Inf. Comput..

[82]  Parosh Aziz Abdulla,et al.  Undecidable Verification Problems for Programs with Unreliable Channels , 1994, Inf. Comput..

[83]  Michal Kunc,et al.  What Do We Know About Language Equations? , 2007, Developments in Language Theory.

[84]  I. Rival Graphs and order : the role of graphs in the theory of ordered sets and its applications , 1985 .

[85]  Colin Stirling,et al.  Modal Logics and mu-Calculi: An Introduction , 2001, Handbook of Process Algebra.

[86]  Christel Baier,et al.  Verifying nondeterministic probabilistic channel systems against ω-regular linear-time properties , 2005, TOCL.

[87]  Richard Mayr,et al.  Deciding Bisimulation-Like Equivalences with Finite-State Processes , 1998, ICALP.

[88]  Ahmed Bouajjani,et al.  Verifying Programs with Dynamic 1-Selector-Linked Structures in Regular Model Checking , 2005, TACAS.

[89]  Kedar S. Namjoshi,et al.  On model checking for non-deterministic infinite-state systems , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[90]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[91]  Alain Finkel,et al.  Decidability of the termination problem for completely specified protocols , 1994, Distributed Computing.

[92]  Parosh Aziz Abdulla,et al.  Using Forward Reachability Analysis for Verification of Lossy Channel Systems , 2004, Formal Methods Syst. Des..