Implantation temperature dependence of Si activation in AlGaN

Si+ ion implantation at a total dose of 1.0×1015cm−2 and multiple ion energies in the range of 30–190keV into Al0.13Ga0.87N layers on sapphire substrates for n-type doping was carried out at substrate temperatures ranging from −196to700°C, followed by annealing at 1150–1400°C for 5min. The activation efficiency at fixed annealing temperature (1250°C) was highest (∼50%) for room temperature implantation and degraded significantly for elevated temperature implantation. The effective Si donor ionization energy decreased with increasing annealing temperature, which may be related to the Mott transition that creates degenerate layers as the activation percentage increased. The minimum sheet resistance obtained was ∼100Ω∕sq after annealing room temperature implants at 1350–1400°C.

[1]  Nevill Mott,et al.  The theory of impurity conduction , 1961 .

[2]  S. Pearton,et al.  Damage to epitaxial GaN layers by silicon implantation , 1996 .

[3]  J. Zolper,et al.  Annealing of ion implanted gallium nitride , 1998 .

[4]  W. Gibson,et al.  Lattice location of Si in ion implanted GaN , 1998 .

[5]  R. J. Shul,et al.  Ultrahigh Si+ implant activation efficiency in GaN using a high-temperature rapid thermal process system , 1998 .

[6]  S. Pearton,et al.  Strong surface disorder and loss of N produced by ion bombardment of GaN , 2000 .

[7]  F. Ren,et al.  Creation of high resistivity GaN by implantation of Ti, O, Fe, or Cr , 2000 .

[8]  Chennupati Jagadish,et al.  High-pressure high-temperature annealing of ion-implanted GaN films monitored by visible and ultraviolet micro-Raman scattering , 2000 .

[9]  S. Kucheyev,et al.  Ion-beam-induced porosity of GaN , 2000 .

[10]  Chennupati Jagadish,et al.  Damage Buildup in GaN under Ion Bombardment , 2000 .

[11]  S. Kucheyev,et al.  Polycrystallization and surface erosion of amorphous GaN during elevated temperature ion bombardment , 2000 .

[12]  C. Ronning Ion implantation into gallium nitride , 2001 .

[13]  S. Kucheyev,et al.  Disordering and anomalous surface erosion of GaN during ion bombardment at elevated temperatures , 2001 .

[14]  S. Kucheyev,et al.  The effects of ion mass, energy, dose, flux and irradiation temperature on implantation disorder in GaN , 2001 .

[15]  Chennupati Jagadish,et al.  Effect of ion species on the accumulation of ion-beam damage in GaN , 2001 .

[16]  S. Kucheyev,et al.  High-dose ion implantation into GaN , 2001 .

[17]  T. Jimbo,et al.  Co-implantation of Si+N into GaN for n-type doping , 2002 .

[18]  M. O. Manasreh,et al.  Structural disorder in ion-implanted AlxGa1−xN , 2002 .

[19]  Effect of ion species on implantation-produced disorder in GaN at liquid nitrogen temperature , 2002 .

[20]  M. O. Manasreh,et al.  Ion-beam-produced damage and its stability in AlN films , 2002 .

[21]  James A. Fellows,et al.  Electrical activation studies of GaN implanted with Si from low to high dose , 2002 .

[22]  Yan-Kuin Su,et al.  n ¿ -GaN formed by Si implantation into p-GaN , 2002 .

[23]  J. Chyi,et al.  Activation kinetics of implanted Si+ in GaN and application to fabricating lateral schottky diodes , 2003 .

[24]  S. Kucheyev,et al.  Nature of planar defects in ion-implanted GaN , 2003 .

[25]  M. L. Lee,et al.  Deep level defect in Si-implanted GaN n+-p junction , 2003 .

[26]  T. Inada,et al.  Silicon implantation in epitaxial GaN layers: Encapsulant annealing and electrical properties , 2004 .

[27]  J. Chyi,et al.  Lateral schottky GaN rectifiers formed by Si+ ion implantation , 2004 .

[28]  Y. Irokawa,et al.  Electrical activation characteristics of silicon-implanted GaN , 2005 .