The q-analog of Kostant's partition function and the highest root of the simple Lie algebras

For a given weight of a complex simple Lie algebra, the q-analog of Kostant’s partition function is a polynomial valued function in the variable q, where the coefficient of q is the number of ways the weight can be written as a nonnegative integral sum of exactly k positive roots. In this paper we determine generating functions for the q-analog of Kostant’s partition function when the weight in question is the highest root of the classical Lie algebras of types B, C, and D, and the exceptional Lie algebras of type G2, F4, E6, E7, and E8. ∗ This research was supported by research funds from Harvey Mudd College. P.E. HARRIS ET AL. /AUSTRALAS. J. COMBIN. 71 (1) (2018), 68–91 69

[1]  Steve Butler,et al.  Enumerating (Multiplex) Juggling Sequences , 2008 .

[2]  Andrei Zelevinsky,et al.  Tensor product multiplicities and convex polytopes in partition space , 1988 .

[3]  On the adjoint representation of and the Fibonacci numbers , 2011 .

[4]  On the combinatorics of Kostant's partition function , 1985 .

[5]  U. Eggers Introduction To Lie Algebras And Representation Theory , 2016 .

[6]  I. James,et al.  Singularities * , 2008 .

[7]  Etienne Rassart,et al.  A vector partition function for the multiplicities of sl_k(C) , 2003, math/0307227.

[8]  Charles Cochet,et al.  Volume Computation for Polytopes and Partition Functions for Classical Root Systems , 2006, Discret. Comput. Geom..

[9]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[10]  Kostant's weight multiplicity formula and the Fibonacci numbers , 2011, 1111.6648.

[11]  Jeffrey R. Schmidt,et al.  The Kostant partition function for simple Lie algebras , 1984 .

[12]  M. Vergne,et al.  Kostant Partitions Functions and Flow Polytopes , 2008 .

[13]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[14]  R. K. Gupta,et al.  Characters and the q-Analog of Weight Multiplicity , 1987 .

[15]  A. Perelomov,et al.  Generating functions and multiplicity formulas: The case of rank two simple Lie algebras , 2015, 1506.07815.

[16]  B. Kostant A FORMULA FOR THE MULTIPLICITY OF A WEIGHT. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Combinatorial problems related to Kostant's weight multiplicity formula , 2012 .

[18]  Tatsuya Tate,et al.  Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers , 2003, math/0305251.

[19]  Alexander I. Barvinok,et al.  Lattice Points and Lattice Polytopes , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[20]  Charles Cochet Vector partition function and representation theory , 2005 .

[22]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[23]  Alexander I. Barvinok,et al.  A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed , 1993, FOCS.