Superconducting Ferromagnetic Nanodiamond.

Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature Tc ∼ 3 K and a Curie temperature TCurie > 400 K. In spite of the high TCurie, our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

[1]  D. Srivastava,et al.  Irradiation-induced magnetism in carbon nanostructures. , 2005, Physical review letters.

[2]  Lee,et al.  Surface phonons and CH vibrational modes of diamond (100) and (111) surfaces. , 1993, Physical review. B, Condensed matter.

[3]  Hiroshi Kawarada,et al.  Hydrogen-terminated diamond surfaces and interfaces , 1996 .

[4]  Resonating Valence Bond Mechanism of Impurity Band Superconductivity in Diamond , 2004, cond-mat/0404286.

[5]  L. Dubrovinsky,et al.  An insight into what superconducts in polycrystalline boron-doped diamonds based on investigations of microstructure , 2008, Proceedings of the National Academy of Sciences.

[6]  T. Samuely,et al.  Enhanced Superconductivity in Nanosized Tips of Scanning Tunnelling Microscope , 2010 .

[7]  H. Alloul Introduction to Superconductivity , 2011 .

[8]  Yongsheng Chen,et al.  Room-temperature ferromagnetism of graphene. , 2009, Nano letters.

[9]  Y. Kawazoe,et al.  Ferromagnetism in semihydrogenated graphene sheet. , 2009, Nano letters.

[10]  V. Novosad,et al.  Adjustable Superconducting Anisotropy in Superconductor-Ferromagnet Bilayers , 2009, IEEE Transactions on Applied Superconductivity.

[11]  Zhili Sun,et al.  UV Raman characteristics of nanocrystalline diamond films with different grain size , 2000 .

[12]  Wilfried Vandervorst,et al.  Conductive diamond tips with sub‐nanometer electrical resolution for characterization of nanoelectronics device structures , 2009 .

[13]  A. Volodin,et al.  Domain-wall superconductivity in superconductor–ferromagnet hybrids , 2004, Nature materials.

[14]  P. May Diamond thin films: a 21st-century material , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  A. Deneuville,et al.  About the origin of the low wave number structures of the Raman spectra of heavily boron doped diamond films , 2004 .

[16]  Superconductivity in diamond thin films well above liquid helium temperature , 2004, cond-mat/0406053.

[17]  H. Adrian,et al.  EVIDENCE OF CHARGE-CARRIER COMPENSATION EFFECTS IN LA0.67CA0.33MNO3 , 1998 .

[18]  É. Bustarret Superconducting diamond: an introduction , 2008 .

[19]  R. Rosenbaum,et al.  Experimental study of the Ioffe-Regel criterion for amorphous indium oxide films , 1998 .

[20]  K. Haenen,et al.  Role of grain size in superconducting boron-doped nanocrystalline diamond thin films grown by CVD , 2011 .

[21]  X. Blase,et al.  Impurity dimers in superconducting B-doped diamond: Experiment and first-principles calculations , 2006 .

[22]  Hamers,et al.  Surface electronic structure of Si(111)-(7x7) resolved in real space. , 1986, Physical review letters.

[23]  P. Anderson,et al.  Spin Alignment in the Superconducting State , 1959 .

[24]  Hiroshi Katayama-Yoshida,et al.  Materials Design of Ferromagnetic Diamond , 2005 .

[25]  A. Deneuville,et al.  Detection of CHx bonds from micro Raman spectroscopy on polycrystalline boron doped diamond electrodes , 2002 .

[26]  A. Enders,et al.  A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields. , 2013, The Review of scientific instruments.

[27]  T. L. Makarova Magnetic Properties of Carbon Structures , 2005 .

[28]  V. Novosad,et al.  Visualizing domain wall and reverse domain superconductivity , 2014, Nature Communications.

[29]  E. Ekimov,et al.  Bosonic Anomalies in Boron-Doped Polycrystalline Diamond , 2016 .

[30]  Malcolm L. H. Green,et al.  Ferromagnetism of double-walled carbon nanotubes , 2010 .

[31]  M. Stutzmann,et al.  Electronic and optical properties of boron-doped nanocrystalline diamond films , 2009 .

[32]  V. Sidorov,et al.  Global and Local Superconductivity in Boron‐Doped Granular Diamond , 2014, Advanced materials.

[33]  Surface electronic structure of Si(111)-(7x7) resolved in real space. , 1986 .

[34]  X. Blase,et al.  Superconducting group-IV semiconductors. , 2009, Nature materials.

[35]  Yoichiro Sato,et al.  SURFACE-ENHANCED RAMAN SPECTROSCOPIC STUDY OF HYDROGEN AND DEUTERIUM CHEMISORPTION ON DIAMOND (111) AND (100) SURFACES , 1999 .

[36]  A. Buzdin,et al.  Domain wall superconductivity in ferromagnetic superconductors , 2003 .

[37]  L. Ortega,et al.  Metal-to-insulator transition and superconductivity in boron-doped diamond , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Z. Remeš,et al.  Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films , 2015 .

[39]  M. Bertin,et al.  Density-of-states effect on surface and lattice vibrational modes in hydrogenated polycrystalline diamond , 2006 .

[40]  M. Rothermel,et al.  The role of hydrogen in room-temperature ferromagnetism at graphite surfaces , 2009, 0905.4315.

[41]  Venkatesh Narayanamurti,et al.  Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor , 1978 .

[42]  V. Sidorov,et al.  Superconductivity in diamond , 2004, Nature.

[43]  M. Kulić,et al.  Coexistence of superconductivity and magnetism theoretical predictions and experimental results , 1985 .

[44]  F. Omnès,et al.  The diamond superconducting quantum interference device. , 2011, ACS nano.