Superconducting Ferromagnetic Nanodiamond.
暂无分享,去创建一个
Jun Li | Johan Vanacken | Johan Hofkens | Alexander Volodin | Peter Samuely | M. Roeffaers | J. Hofkens | A. Volodin | P. May | J. Vacík | Shengqiang Zhou | V. Moshchalkov | T. Samuely | J. Vanacken | Paul W May | Maarten B J Roeffaers | Haifeng Yuan | Gufei Zhang | Tomas Samuely | Zheng Xu | Johanna K Jochum | Shengqiang Zhou | Oleksandr Onufriienko | Jozef Kačmarčík | Julian A Steele | Jiri Vacík | Pavol Szabó | Haifeng Yuan | Dorin Cerbu | Victor V Moshchalkov | J. Kačmarčík | J. Steele | Gufei Zhang | D. Cerbu | Jun Li | J. Jochum | P. Samuely | O. Onufriienko | P. Szabó | Zhengyi Xu
[1] D. Srivastava,et al. Irradiation-induced magnetism in carbon nanostructures. , 2005, Physical review letters.
[2] Lee,et al. Surface phonons and CH vibrational modes of diamond (100) and (111) surfaces. , 1993, Physical review. B, Condensed matter.
[3] Hiroshi Kawarada,et al. Hydrogen-terminated diamond surfaces and interfaces , 1996 .
[4] Resonating Valence Bond Mechanism of Impurity Band Superconductivity in Diamond , 2004, cond-mat/0404286.
[5] L. Dubrovinsky,et al. An insight into what superconducts in polycrystalline boron-doped diamonds based on investigations of microstructure , 2008, Proceedings of the National Academy of Sciences.
[6] T. Samuely,et al. Enhanced Superconductivity in Nanosized Tips of Scanning Tunnelling Microscope , 2010 .
[7] H. Alloul. Introduction to Superconductivity , 2011 .
[8] Yongsheng Chen,et al. Room-temperature ferromagnetism of graphene. , 2009, Nano letters.
[9] Y. Kawazoe,et al. Ferromagnetism in semihydrogenated graphene sheet. , 2009, Nano letters.
[10] V. Novosad,et al. Adjustable Superconducting Anisotropy in Superconductor-Ferromagnet Bilayers , 2009, IEEE Transactions on Applied Superconductivity.
[11] Zhili Sun,et al. UV Raman characteristics of nanocrystalline diamond films with different grain size , 2000 .
[12] Wilfried Vandervorst,et al. Conductive diamond tips with sub‐nanometer electrical resolution for characterization of nanoelectronics device structures , 2009 .
[13] A. Volodin,et al. Domain-wall superconductivity in superconductor–ferromagnet hybrids , 2004, Nature materials.
[14] P. May. Diamond thin films: a 21st-century material , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[15] A. Deneuville,et al. About the origin of the low wave number structures of the Raman spectra of heavily boron doped diamond films , 2004 .
[16] Superconductivity in diamond thin films well above liquid helium temperature , 2004, cond-mat/0406053.
[17] H. Adrian,et al. EVIDENCE OF CHARGE-CARRIER COMPENSATION EFFECTS IN LA0.67CA0.33MNO3 , 1998 .
[18] É. Bustarret. Superconducting diamond: an introduction , 2008 .
[19] R. Rosenbaum,et al. Experimental study of the Ioffe-Regel criterion for amorphous indium oxide films , 1998 .
[20] K. Haenen,et al. Role of grain size in superconducting boron-doped nanocrystalline diamond thin films grown by CVD , 2011 .
[21] X. Blase,et al. Impurity dimers in superconducting B-doped diamond: Experiment and first-principles calculations , 2006 .
[22] Hamers,et al. Surface electronic structure of Si(111)-(7x7) resolved in real space. , 1986, Physical review letters.
[23] P. Anderson,et al. Spin Alignment in the Superconducting State , 1959 .
[24] Hiroshi Katayama-Yoshida,et al. Materials Design of Ferromagnetic Diamond , 2005 .
[25] A. Deneuville,et al. Detection of CHx bonds from micro Raman spectroscopy on polycrystalline boron doped diamond electrodes , 2002 .
[26] A. Enders,et al. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields. , 2013, The Review of scientific instruments.
[27] T. L. Makarova. Magnetic Properties of Carbon Structures , 2005 .
[28] V. Novosad,et al. Visualizing domain wall and reverse domain superconductivity , 2014, Nature Communications.
[29] E. Ekimov,et al. Bosonic Anomalies in Boron-Doped Polycrystalline Diamond , 2016 .
[30] Malcolm L. H. Green,et al. Ferromagnetism of double-walled carbon nanotubes , 2010 .
[31] M. Stutzmann,et al. Electronic and optical properties of boron-doped nanocrystalline diamond films , 2009 .
[32] V. Sidorov,et al. Global and Local Superconductivity in Boron‐Doped Granular Diamond , 2014, Advanced materials.
[33] Surface electronic structure of Si(111)-(7x7) resolved in real space. , 1986 .
[34] X. Blase,et al. Superconducting group-IV semiconductors. , 2009, Nature materials.
[35] Yoichiro Sato,et al. SURFACE-ENHANCED RAMAN SPECTROSCOPIC STUDY OF HYDROGEN AND DEUTERIUM CHEMISORPTION ON DIAMOND (111) AND (100) SURFACES , 1999 .
[36] A. Buzdin,et al. Domain wall superconductivity in ferromagnetic superconductors , 2003 .
[37] L. Ortega,et al. Metal-to-insulator transition and superconductivity in boron-doped diamond , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[38] Z. Remeš,et al. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films , 2015 .
[39] M. Bertin,et al. Density-of-states effect on surface and lattice vibrational modes in hydrogenated polycrystalline diamond , 2006 .
[40] M. Rothermel,et al. The role of hydrogen in room-temperature ferromagnetism at graphite surfaces , 2009, 0905.4315.
[41] Venkatesh Narayanamurti,et al. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor , 1978 .
[42] V. Sidorov,et al. Superconductivity in diamond , 2004, Nature.
[43] M. Kulić,et al. Coexistence of superconductivity and magnetism theoretical predictions and experimental results , 1985 .
[44] F. Omnès,et al. The diamond superconducting quantum interference device. , 2011, ACS nano.