Fast arithmetic for triangular sets: From theory to practice

We study arithmetic operations for triangular families of polynomials, concentrating on multiplication in dimension zero. By a suitable extension of fast univariate Euclidean division, we obtain theoretical and practical improvements over a direct recursive approach; for a family of special cases, we reach quasi-linear complexity. The main outcome we have in mind is the acceleration of higher-level algorithms, by interfacing our low-level implementation with languages such as AXIOM or Maple. We show the potential for huge speed-ups, by comparing two AXIOM implementations of van Hoeij and Monagan's modular GCD algorithm.

[1]  P. L. Montgomery Modular multiplication without trial division , 1985 .

[2]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[3]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[4]  Dario Bini Relations between exact and approximate bilinear algorithms. Applications , 1980 .

[5]  Marc Moreno Maza,et al.  Lifting techniques for triangular decompositions , 2005, ISSAC.

[6]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[7]  Grazia Lotti,et al.  Approximate Solutions for the Bilinear Form Computational Problem , 1980, SIAM J. Comput..

[8]  Jeremy R. Johnson,et al.  High-performance implementations of the Descartes method , 2006, ISSAC '06.

[9]  Victor Y. Pan Simple Multivariate Polynomial Multiplication , 1994, J. Symb. Comput..

[10]  Malte Sieveking An algorithm for division of powerseries , 2005, Computing.

[11]  Alexei Yu. Uteshev,et al.  On the Bézout Construction of the Resultant , 1999, J. Symb. Comput..

[12]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[13]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[14]  Éric Schost,et al.  Multivariate power series multiplication , 2005, ISSAC.

[15]  Lars Langemyr Algorithms for a Multiple Algebraic Extension II , 1991 .

[16]  Joris van der Hoeven The truncated fourier transform and applications , 2004, ISSAC '04.

[17]  Mark van Hoeij,et al.  A modular GCD algorithm over number fields presented with multiple extensions , 2002, ISSAC '02.

[18]  Marc Moreno Maza,et al.  Efficient Implementation of Polynomial Arithmetic in a Multiple-Level Programming Environment , 2006, ICMS.

[19]  Victor Shoup,et al.  A New Polynomial Factorization Algorithm and its Implementation , 1995, J. Symb. Comput..

[20]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[21]  S. Cook,et al.  ON THE MINIMUM COMPUTATION TIME OF FUNCTIONS , 1969 .

[22]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[23]  Jeremy R. Johnson,et al.  Architecture-aware classical Taylor shift by 1 , 2005, ISSAC.

[24]  Marc Moreno Maza,et al.  Fast arithmetic for triangular sets: from theory to practice , 2007, ISSAC '07.

[25]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[26]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[27]  Marc Moreno Maza,et al.  Implementation techniques for fast polynomial arithmetic in a high-level programming environment , 2006, ISSAC '06.

[28]  Éric Schost,et al.  On the complexities of multipoint evaluation and interpolation , 2004, Theor. Comput. Sci..

[29]  Franz Franchetti,et al.  SPIRAL: Code Generation for DSP Transforms , 2005, Proceedings of the IEEE.

[30]  H. T. Kung On computing reciprocals of power series , 1974 .

[31]  Arnold Schönhage,et al.  Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2 , 1977, Acta Informatica.