Degeneration of trigonal curves and solutions of the KP-hierarchy

It is known that soliton solutions of the KP-hierarchy corresponds to singular rational curves with only ordinary double points. In this paper we study the degeneration of theta function solutions corresponding to certain trigonal curves. We show that, when the curves degenerate to singular rational curves with only ordinary triple points, the solutions tend to some intermediate solutions between solitons and rational solutions. They are considered as cerain limits of solitons. The Sato Grassmannian is extensively used here to study the degeneration of solutions, since it directly connects solutions of the KP-hierarchy to the defining equations of algebraic curves.We define a class of solutions in the Wronskian form which contains soliton solutions as a subclass and prove that, using the Sato Grassmannian, the degenerate trigonal solutions are connected to those solutions by certain gauge transformations

[1]  P. Grinevich,et al.  Rational Degenerations of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathtt{M}}}$$\end{document}-Curves, Tota , 2015, Communications in Mathematical Physics.

[2]  D. Korotkin,et al.  On higher genus Weierstrass sigma-function , 2012, 1201.3961.

[3]  Yuji Kodama,et al.  Classification of the line-soliton solutions of KPII , 2007, 0710.1456.

[4]  V. Buchstaber,et al.  Solution of the problem of differentiation of Abelian functions over parameters for families of (n, s)-curves , 2008 .

[5]  V. Buchstaber,et al.  Multi-dimensional sigma-functions , 2012, 1208.0990.

[6]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[7]  I. Krichever Rational solutions of the Zakharov-Shabat equations and completely integrable systems of N particles on a line , 1983 .

[8]  A. Nakayashiki Sigma Function as A Tau Function , 2009, 0904.0846.

[9]  Mikio Sato Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .

[10]  Gino Biondini,et al.  Kadomtsev-Petviashvili equation , 2008, Scholarpedia.

[11]  G. Segal,et al.  Loop groups and equations of KdV type , 1985 .

[12]  M. Jimbo,et al.  TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .

[13]  Junkichi Satsuma,et al.  A Wronskian Representation of N-Soliton Solutions of Nonlinear Evolution Equations , 1979 .

[14]  D. Mumford Tata Lectures on Theta I , 1982 .

[15]  N. Kawamoto,et al.  Geometric realization of conformal field theory on Riemann surfaces , 1988 .

[16]  A. Nakayashiki On Algebraic Expressions of Sigma Functions for (n,s) Curves , 2008, 0803.2083.

[17]  Y. Kodama KP Solitons and the Grassmannians , 2017 .

[18]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[19]  Y. Kodama,et al.  KP solitons, total positivity, and cluster algebras , 2011, Proceedings of the National Academy of Sciences.

[20]  Igor Krichever,et al.  Rational solutions of the Kadomtsev — Petviashvili equation and integrable systems of N particles on a line , 1978 .

[21]  J. Bernatska,et al.  ON DEGENERATE SIGMA-FUNCTIONS IN GENUS 2 , 2015, Glasgow Mathematical Journal.

[22]  Victor Matveevich Buchstaber,et al.  Kleinian functions, hyperelliptic Jacobians and applications , 1997 .

[23]  G. Wilson Collisions of Calogero-Moser particles and an adelic Grassmannian (With an Appendix by I.G. Macdonald) , 1998 .

[24]  Y. Manin Algebraic aspects of nonlinear differential equations , 1979 .

[25]  M. Mulase ALGEBRAIC THEORY OF THE KP EQUATIONS , 2002 .

[26]  V. Buchstaber,et al.  Rational analogs of abelian functions , 1999 .

[27]  Tau Function Approach to Theta Functions , 2015, 1504.01186.

[28]  Junkichi Satsuma,et al.  N-Soliton Solution of the Two-Dimensional Korteweg-deVries Equation , 1976 .

[29]  Y. Kodama,et al.  KP solitons and total positivity for the Grassmannian , 2011, 1106.0023.

[30]  S. Abenda On a family of KP multi–line solitons associated to rational degenerations of real hyperelliptic curves and to the finite non–periodic Toda hierarchy , 2016, 1605.00995.

[31]  Yuji Kodama,et al.  Soliton Solutions of the KP Equation and Application to Shallow Water Waves , 2009, 0902.4433.