A method of orbital analysis for large-scale first-principles simulations.

An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4).

[1]  Stefan Goedecker,et al.  Linear scaling electronic structure methods in chemistry and physics , 2003, Comput. Sci. Eng..

[2]  Kiyoyuki Terakura,et al.  Molecular orbital calculation of biomolecules with fragment molecular orbitals , 2009 .

[3]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[4]  Y. Kameda,et al.  Ion–ion interactions of LiPF6 and LiBF4 in propylene carbonate solutions , 2009 .

[5]  Taisuke Ozaki O(N) Krylov-subspace method for large-scale ab initio electronic structure calculations , 2006 .

[6]  Blöchl,et al.  Generalized separable potentials for electronic-structure calculations. , 1990, Physical review. B, Condensed matter.

[7]  Frank Weinhold,et al.  Natural localized molecular orbitals , 1985 .

[8]  Taisuke Ozaki,et al.  Large-scale first-principles molecular dynamics for electrochemical systems with O(N) methods. , 2012, The Journal of chemical physics.

[9]  Taisuke Ozaki BOND-ORDER POTENTIAL BASED ON THE LANCZOS BASIS , 1999 .

[10]  F. Weinhold,et al.  Natural population analysis , 1985 .

[11]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[12]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[13]  Clark R. Landis,et al.  NATURAL BOND ORBITALS AND EXTENSIONS OF LOCALIZED BONDING CONCEPTS , 2001 .

[14]  Clark R. Landis,et al.  Valency and Bonding: Contents , 2005 .

[15]  Taisuke Ozaki,et al.  Efficient projector expansion for the ab initio LCAO method , 2005 .

[16]  B. C. Carlson,et al.  Orthogonalization Procedures and the Localization of Wannier Functions , 1957 .

[17]  J. R. Schmidt,et al.  Generalization of Natural Bond Orbital Analysis to Periodic Systems: Applications to Solids and Surfaces via Plane-Wave Density Functional Theory. , 2012, Journal of chemical theory and computation.

[18]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[19]  Weitao Yang,et al.  A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules , 1995 .

[20]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[21]  T. Ozaki,et al.  Block bond-order potential as a convergent moments-based method , 2000 .

[22]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[23]  P. Balbuena,et al.  Lithium-ion batteries : solid-electrolyte interphase , 2004 .

[24]  V. Heine,et al.  Electronic structure based on the local atomic environment for tight-binding bands. II , 1972 .

[25]  Yoshitada Morikawa,et al.  First-principles molecular dynamics simulation of biased electrode/solution interface , 2007 .

[26]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[27]  T. Homma,et al.  In Situ Observation of Dendrite Growth of Electrodeposited Li Metal , 2010 .

[28]  W. Kohn,et al.  Nearsightedness of electronic matter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .

[30]  Chris-Kriton Skylaris,et al.  Natural bond orbital analysis in the ONETEP code: Applications to large protein systems , 2013, J. Comput. Chem..

[31]  Minoru Otani,et al.  First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach , 2006 .

[32]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[33]  Darrin M York,et al.  Insights into the regioselectivity and RNA-binding affinity of HIV-1 nucleocapsid protein from linear-scaling quantum methods. , 2003, Journal of molecular biology.

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  Hiroaki Yoshida,et al.  Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging , 1997 .

[36]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[37]  Taisuke Ozaki,et al.  Variationally optimized atomic orbitals for large-scale electronic structures , 2003 .

[38]  Kiyoyuki Terakura,et al.  Convergent recursive O(N) method for ab initio tight-binding calculations , 2001 .

[39]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[40]  Taisuke Ozaki,et al.  First-principles study of interface structure and energy of Fe/NbC , 2013 .

[41]  Frank Weinhold,et al.  Natural resonance theory: III. Chemical applications , 1998 .

[42]  Clark R. Landis,et al.  Valency and Bonding: Author index , 2005 .

[43]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[44]  Adri C. T. van Duin,et al.  Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study , 2011 .

[45]  I. Hamada,et al.  Electrode Dynamics from First Principles , 2008 .

[46]  Taisuke Ozaki,et al.  Numerical atomic basis orbitals from H to Kr , 2004 .

[47]  Yuto Komeiji,et al.  Fragment molecular orbital method: analytical energy gradients , 2001 .