Graph States, Pivot Minor, and Universality of (X, Z)-Measurements
暂无分享,去创建一个
[1] Salman Beigi,et al. Graph concatenation for quantum codes , 2009, 0910.4129.
[2] Michael A. Nielsen,et al. Quantum computation by measurement and quantum memory , 2003 .
[3] Simon Perdrix. STATE TRANSFER INSTEAD OF TELEPORTATION IN MEASUREMENT-BASED QUANTUM COMPUTATION , 2005 .
[4] E. Kashefi,et al. Determinism in the one-way model , 2005, quant-ph/0506062.
[5] Ronald de Wolf,et al. Quantum Proofs for Classical Theorems , 2009, Theory Comput..
[6] Simon Perdrix. Towards minimal resources of measurement-based quantum computation , 2007 .
[7] Bart De Moor,et al. Edge-local equivalence of graphs , 2005 .
[8] W Dür,et al. Multiparticle entanglement purification for graph states. , 2003, Physical review letters.
[9] A. Bouchet. Connectivity of Isotropic Systems , 1989 .
[10] R Raussendorf,et al. A one-way quantum computer. , 2001, Physical review letters.
[11] Mehdi Mhalla,et al. Which Graph States are Useful for Quantum Information Processing? , 2010, TQC.
[12] H. Briegel,et al. Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.
[13] Michael A. Nielsen,et al. Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 state , 2001 .
[14] Elham Kashefi,et al. The measurement calculus , 2004, JACM.
[15] A. Zeilinger,et al. Experimental one-way quantum computing , 2005, Nature.
[16] André Bouchet,et al. Graphic presentations of isotropic systems , 1987, J. Comb. Theory, Ser. B.
[17] Elham Kashefi,et al. Computational Depth Complexity of Measurement-Based Quantum Computation , 2009, TQC.
[18] R. Prevedel,et al. High-speed linear optics quantum computing using active feed-forward , 2007, Nature.
[19] J. Eisert,et al. Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.
[20] Bart De Moor,et al. Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.
[21] Debbie W. Leung,et al. Quantum computation by measurements , 2003 .
[22] Mehdi Mhalla,et al. Finding Optimal Flows Efficiently , 2007, ICALP.
[23] Wolfgang Dür,et al. Universal resources for measurement-based quantum computation. , 2006, Physical review letters.
[24] Hubert de Fraysseix,et al. Local complementation and interlacement graphs , 1981, Discret. Math..
[25] Elham Kashefi,et al. Extended Measurement Calculus , 2009 .
[26] Sang-il Oum,et al. Excluding a bipartite circle graph from line graphs , 2009, J. Graph Theory.
[27] D. Markham,et al. Graph states for quantum secret sharing , 2008, 0808.1532.
[28] SIMPLE SETS OF MEASUREMENTS FOR UNIVERSAL QUANTUM COMPUTATION AND GRAPH STATE PREPARATION , 2010 .
[29] Elham Kashefi,et al. Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[30] Yaoyun Shi. Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..
[31] Sang-il Oum,et al. Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.
[32] Mehdi Mhalla,et al. New Protocols and Lower Bounds for Quantum Secret Sharing with Graph States , 2011, TQC.
[33] Damian Markham,et al. Information Flow in Secret Sharing Protocols , 2009, DCM.
[34] James F. Geelen,et al. A Generalization of Tutte's Characterization of Totally Unimodular Matrices , 1997, J. Comb. Theory, Ser. B.
[35] Mehdi Mhalla,et al. Resources Required for Preparing Graph States , 2006, ISAAC.
[36] Sylvain Gravier,et al. Optimal accessing and non-accessing structures for graph protocols , 2011, ArXiv.
[37] André Bouchet,et al. Circle Graph Obstructions , 1994, J. Comb. Theory, Ser. B.
[38] Paul D. Seymour,et al. Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.
[39] E. Kashefi,et al. Generalized flow and determinism in measurement-based quantum computation , 2007, quant-ph/0702212.