DHUnet: Dual-branch hierarchical global-local fusion network for whole slide image segmentation

[1]  Shuihua Wang,et al.  MyI-Net: Fully Automatic Detection and Quantification of Myocardial Infarction from Cardiovascular MRI Images , 2022, Entropy.

[2]  M. Chongcheawchamnan,et al.  Noise-reducing attention cross fusion learning transformer for histological image classification of osteosarcoma , 2022, Biomed. Signal Process. Control..

[3]  Wanqing Chen,et al.  Cancer statistics in China and United States, 2022: profiles, trends, and determinants , 2022, Chinese medical journal.

[4]  Po-Hsuan Cameron Chen,et al.  Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge , 2022, Nature Medicine.

[5]  Yuankai Huo,et al.  Evaluating transformer-based semantic segmentation networks for pathological image segmentation , 2021, Medical Imaging.

[6]  Xiaohua Lv,et al.  Robust whole slide image analysis for cervical cancer screening using deep learning , 2021, Nature Communications.

[7]  Vishal M. Patel,et al.  Medical Transformer: Gated Axial-Attention for Medical Image Segmentation , 2021, MICCAI.

[8]  M. Hsiao,et al.  An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning , 2021, Nature Communications.

[9]  Yundong Zhang,et al.  TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation , 2021, MICCAI.

[10]  A. Jemal,et al.  Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries , 2021, CA: a cancer journal for clinicians.

[11]  Rentuo Tao,et al.  DA-RefineNet: Dual-inputs Attention RefineNet for Whole Slide Image Segmentation , 2021, 2020 25th International Conference on Pattern Recognition (ICPR).

[12]  Matthieu Cord,et al.  Training data-efficient image transformers & distillation through attention , 2020, ICML.

[13]  Anne L. Martel,et al.  Overcoming the limitations of patch-based learning to detect cancer in whole slide images , 2020, Scientific Reports.

[14]  Delong Zhu,et al.  A hybrid network for automatic hepatocellular carcinoma segmentation in H&E-stained whole slide images , 2020, Medical Image Anal..

[15]  Jeroen van der Laak,et al.  HookNet: multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images , 2020, Medical Image Anal..

[16]  Jianping Gou,et al.  Knowledge Distillation: A Survey , 2020, International Journal of Computer Vision.

[17]  Anne L. Martel,et al.  Deep neural network models for computational histopathology: A survey , 2019, Medical Image Anal..

[18]  Jens Petersen,et al.  nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation , 2020, Nature Methods.

[19]  Pieter Abbeel,et al.  Denoising Diffusion Probabilistic Models , 2020, NeurIPS.

[20]  Lanfen Lin,et al.  UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[21]  Oscar Déniz-Suárez,et al.  Glomerulosclerosis identification in whole slide images using semantic segmentation , 2019, Comput. Methods Programs Biomed..

[22]  Jianming Liang,et al.  UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation , 2019, IEEE Transactions on Medical Imaging.

[23]  Thomas de Lange,et al.  ResUNet++: An Advanced Architecture for Medical Image Segmentation , 2019, 2019 IEEE International Symposium on Multimedia (ISM).

[24]  Andrew H. Beck,et al.  Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association , 2019, The Journal of pathology.

[25]  A. D'Amico,et al.  Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. , 2019, Journal of the National Comprehensive Cancer Network : JNCCN.

[26]  Dimitris N. Metaxas,et al.  Joint Segmentation and Fine-Grained Classification of Nuclei in Histopathology Images , 2019, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[27]  Jonathan D. Beezley,et al.  Structured crowdsourcing enables convolutional segmentation of histology images , 2019, Bioinform..

[28]  Mats Andersson,et al.  Multi-Resolution Networks for Semantic Segmentation in Whole Slide Images , 2018, COMPAY/OMIA@MICCAI.

[29]  Qingjie Liu,et al.  Road Extraction by Deep Residual U-Net , 2017, IEEE Geoscience and Remote Sensing Letters.

[30]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[31]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.