Single-Frame Super-Resolution of Solar Magnetograms: Investigating Physics-Based Metrics \& Losses

Breakthroughs in our understanding of physical phenomena have traditionally followed improvements in instrumentation. Studies of the magnetic field of the Sun, and its influence on the solar dynamo and space weather events, have benefited from improvements in resolution and measurement frequency of new instruments. However, in order to fully understand the solar cycle, high-quality data across time-scales longer than the typical lifespan of a solar instrument are required. At the moment, discrepancies between measurement surveys prevent the combined use of all available data. In this work, we show that machine learning can help bridge the gap between measurement surveys by learning to \textbf{super-resolve} low-resolution magnetic field images and \textbf{translate} between characteristics of contemporary instruments in orbit. We also introduce the notion of physics-based metrics and losses for super-resolution to preserve underlying physics and constrain the solution space of possible super-resolution outputs.

[1]  Stockholm University,et al.  Real-time multiframe blind deconvolution of solar images. , 2018, 1806.07150.

[2]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[3]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[4]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .

[5]  Xiaoou Tang,et al.  Learning a Deep Convolutional Network for Image Super-Resolution , 2014, ECCV.

[6]  Jan-Peter Muller,et al.  Super-Resolution Restoration of MISR Images Using the UCL MAGiGAN System , 2018, Remote. Sens..

[7]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[8]  Chi-Hieu Pham,et al.  Brain MRI super-resolution using deep 3D convolutional networks , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[9]  C. J. Wolfson,et al.  Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO) , 2012 .

[10]  A. Asensio Ramos,et al.  Enhancing SDO/HMI images using deep learning , 2017, ArXiv.

[11]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[12]  Wei Wang,et al.  Deep Learning for Single Image Super-Resolution: A Brief Review , 2018, IEEE Transactions on Multimedia.

[13]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[14]  Yang Liu,et al.  Comparison of Line-of-Sight Magnetograms Taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager , 2012 .

[15]  Dario Izzo,et al.  Super-resolution of PROBA-V images using convolutional neural networks , 2019, Astrodynamics.

[16]  Kalevi Mursula,et al.  Photospheric and coronal magnetic fields in six magnetographs , 2016, Astronomy & Astrophysics.

[17]  Sean McGregor,et al.  FlareNet : A Deep Learning Framework for Solar Phenomena Prediction , 2017 .

[18]  Sung-Ho Bae,et al.  Solar farside magnetograms from deep learning analysis of STEREO/EUVI data , 2019, Nature Astronomy.

[19]  Irwin Sobel,et al.  An Isotropic 3×3 image gradient operator , 1990 .

[20]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Yibo Zhang,et al.  Deep Learning Microscopy , 2017, ArXiv.

[22]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[23]  Simon Liedtke,et al.  SunPy—Python for solar physics , 2015, 1505.02563.

[24]  Michael Elad,et al.  Fast and robust multiframe super resolution , 2004, IEEE Transactions on Image Processing.

[25]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[26]  Yoshua Bengio,et al.  HighRes-net: Multi-Frame Super-Resolution by Recursive Fusion , 2019 .

[27]  V. Domingo,et al.  The SOHO mission: An overview , 1995 .

[28]  C. J. Wolfson,et al.  The Solar Oscillations Investigation - Michelson Doppler Imager , 1995 .

[29]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[30]  M. Ben‐Nun,et al.  A Multi-Observatory Inter-Comparison of Line-of-Sight Synoptic Solar Magnetograms , 2014 .