Self-injection locking and phase-locked states in microresonator-based optical frequency combs.

Microresonator-based optical frequency combs have been a topic of extensive research during the last few years. Several theoretical models for the comb generation have been proposed; however, they do not comprehensively address experimental results that show a variety of independent comb generation mechanisms. Here, we present frequency-domain experiments that illuminate the transition of microcombs into phase-locked states, which show characteristics of injection locking between ensembles of comb modes. In addition, we demonstrate the existence of equidistant optical frequency combs that are phase stable but have nondeterministic phase relationships between individual comb modes.

[1]  Jian Wang,et al.  Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. , 2012, Optics express.

[2]  A. Weiner,et al.  Optical arbitrary waveform processing of more than 100 spectral comb lines , 2007 .

[3]  Yanne K Chembo,et al.  Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. , 2010, Physical review letters.

[4]  Scott A. Diddams,et al.  Mechanical Control of a Microrod-Resonator Optical Frequency Comb , 2012, 1205.4272.

[5]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[6]  Michal Lipson,et al.  Octave-spanning frequency comb generation in a silicon nitride chip. , 2011, Optics letters.

[7]  Nan Yu,et al.  On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators. , 2010, Optics letters.

[8]  N. Yu,et al.  Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators , 2010 .

[9]  S. Gee,et al.  Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications , 2006, Journal of Lightwave Technology.

[10]  Hansuek Lee,et al.  Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. , 2012, Physical review letters.

[11]  S. Diddams,et al.  Parametric seeding of a microresonator optical frequency comb. , 2013, Optics express.

[12]  A. Matsko,et al.  Transient regime of Kerr-frequency-comb formation , 2011, 1111.3922.

[13]  Scott A. Diddams,et al.  Laser-machined ultra-high-Q microrod resonators for nonlinear optics , 2013 .

[14]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[15]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[16]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.

[17]  M. Gorodetsky,et al.  Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion , 2009, 0907.0143.

[18]  V. Brasch,et al.  Mode-locking in an optical microresonator via soliton formation , 2012 .

[19]  Nan Yu,et al.  Frequency comb from a microresonator with engineered spectrum. , 2012, Optics express.

[20]  Fritz Keilmann,et al.  Time-domain mid-infrared frequency-comb spectrometer. , 2004, Optics letters.

[21]  Vladimir Aksyuk,et al.  Probing coherence in microcavity frequency combs via optical pulse shaping. , 2012, Optics express.

[22]  Thomas Udem,et al.  Cavity-enhanced dual-comb spectroscopy , 2009, 0908.1928.

[23]  M. Kirchner,et al.  Generation of ultrastable microwaves via optical frequency division , 2011, 1101.3616.

[24]  Michal Lipson,et al.  Chip-based frequency combs with sub-100 GHz repetition rates. , 2012, Optics letters.

[25]  R. Adler A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.

[26]  A. Matsko,et al.  Kerr frequency comb generation in overmoded resonators. , 2012, Optics express.

[27]  Michal Lipson,et al.  Modelocking and femtosecond pulse generation in chip-based frequency combs. , 2012, Optics express.

[28]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[29]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[30]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[31]  Vladimir S. Ilchenko,et al.  Hard and Soft Excitation Regimes of Kerr Frequency Combs , 2011, 1111.3916.

[32]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[33]  Scott A. Diddams,et al.  Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb , 2007, Nature.

[34]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[35]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[36]  Scott A. Diddams,et al.  Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb , 2011, 1106.2487.

[37]  Miro Erkintalo,et al.  Universal scaling laws of Kerr frequency combs. , 2013, Optics letters.

[38]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[39]  I. Coddington,et al.  Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. , 2007, Physical review letters.

[40]  A. Matsko,et al.  On excitation of breather solitons in an optical microresonator. , 2012, Optics letters.

[41]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[42]  Nan Yu,et al.  Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump , 2008, 0807.1909.

[43]  M. Gorodetsky,et al.  Octave spanning tunable frequency comb from a microresonator. , 2011, Physical review letters.

[44]  Roberto Morandotti,et al.  Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. , 2012, Optics express.

[45]  K. Abbink,et al.  24 , 1871, You Can Cross the Massacre on Foot.

[46]  T. Kippenberg,et al.  Full stabilization of a microresonator-based optical frequency comb. , 2008, Physical review letters.

[47]  Michal Lipson,et al.  Silicon-based monolithic optical frequency comb source. , 2011, Optics express.

[48]  A. Matsko,et al.  Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators. , 2012, Optics letters.

[49]  Lute Maleki,et al.  Generation of optical frequency combs with a CaF2 resonator. , 2009, Optics letters.

[50]  A. Weiner,et al.  Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb , 2011, CLEO: 2011 - Laser Science to Photonic Applications.