Distance dependent interhelical couplings of organic rods incorporated in DNA 4-helix bundles.

The synthesis of a conjugated linear organic module containing terminal salicylaldehyde groups and a central activated ester, designed for conjugation to amino-modified oligonucleotides, is presented. The organic module has a phenylene-ethynylene backbone and is highly fluorescent. It is conjugated to oligonucleotide sequences and incorporated into specific locations in a well-defined DNA 4-helix bundle (4-HB). The DNA-nanostructure offers precise location control of the organic modules which allows for selective interhelical coupling reactions. In this study, metal-salen formation as well as dihydrazone formation are used to covalently interlink the organic modules. Both coupling reactions are highly dependent on the distances between the organic modules in the 4-HB. Neighboring modules dimerize easier, whereas more distanced modules are less prone to react, even when the linkers are extended. The dimeric products are characterized by denaturing polyacrylamide gel electrophoresis (PAGE), high performance liquid chromatography (HPLC), and matrix assisted laser desorption/absorption ionization time-of-flight (MALDI TOF) mass spectrometry.

[1]  Hao Yan,et al.  Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles , 2009, Science.

[2]  Yan Liu,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[3]  Eugenio Cantatore,et al.  Bottom-up organic integrated circuits , 2008, Nature.

[4]  Faisal A. Aldaye,et al.  Assembling Materials with DNA as the Guide , 2008, Science.

[5]  N. Seeman,et al.  2',2'-Ligation Demonstrates the Thermal Dependence of DNA-Directed Positional Control. , 2008, Tetrahedron.

[6]  N. Seeman,et al.  Coupling across a DNA helical turn yields a hybrid DNA/organic catenane doubly tailed with functional termini. , 2008, Journal of the American Chemical Society.

[7]  F. Simmel Three-dimensional nanoconstruction with DNA. , 2008, Angewandte Chemie.

[8]  Hao Yan,et al.  DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopatterns. , 2008, Angewandte Chemie.

[9]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[10]  Hao Yan,et al.  Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. , 2008, Journal of the American Chemical Society.

[11]  H. Sleiman,et al.  Templated synthesis of highly stable, electroactive, and dynamic metal-DNA branched junctions. , 2008, Angewandte Chemie.

[12]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[13]  K. Gothelf,et al.  Synthesis of an elongated linear oligo(phenylene ethynylene)-based building block for application in DNA-programmed assembly. , 2006, Organic & biomolecular chemistry.

[14]  Hao Yan,et al.  Addressable molecular tweezers for DNA-templated coupling reactions. , 2006, Nano letters.

[15]  Faisal A. Aldaye,et al.  Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. , 2006, Angewandte Chemie.

[16]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[17]  Christof M Niemeyer,et al.  Rational design of DNA nanoarchitectures. , 2006, Angewandte Chemie.

[18]  Hao Yan,et al.  A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. , 2006, Journal of the American Chemical Society.

[19]  David R. Liu,et al.  DNA‐Templated Synthesis in Organic Solvents , 2006, Chembiochem : a European journal of chemical biology.

[20]  Shuqing Dong,et al.  Mechanism of DNA Strand Cleavage Induced by Hexaaza Macrocyclic Nickel (II) Complex , 2006, Toxicology mechanisms and methods.

[21]  David R. Liu,et al.  Ordered multistep synthesis in a single solution directed by DNA templates. , 2005, Angewandte Chemie.

[22]  Kurt V Gothelf,et al.  DNA-programmed assembly of nanostructures. , 2005, Organic & biomolecular chemistry.

[23]  J. Kjems,et al.  DNA-directed coupling of organic modules by multiple parallel reductive aminations and subsequent cleavage of selected DNA sequences. , 2005, Bioconjugate chemistry.

[24]  Friedrich C Simmel,et al.  Periodic DNA nanotemplates synthesized by rolling circle amplification. , 2005, Nano letters.

[25]  Kurt V Gothelf,et al.  A modular approach to DNA-programmed self-assembly of macromolecular nanostructures. , 2005, Chemistry.

[26]  Philip S Lukeman,et al.  Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale , 2005, Reports on progress in physics. Physical Society.

[27]  H. Sleiman,et al.  Self-assembly of cyclic metal-DNA nanostructures using ruthenium tris(bipyridine)-branched oligonucleotides. , 2004, Angewandte Chemie.

[28]  Chengde Mao,et al.  Reprogramming DNA-directed reactions on the basis of a DNA conformational change. , 2004, Journal of the American Chemical Society.

[29]  David R. Liu,et al.  DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. , 2004, Angewandte Chemie.

[30]  David R. Liu,et al.  DNA-Templated Organic Synthesis and Selection of a Library of Macrocycles , 2004, Science.

[31]  K. Müllen,et al.  Synthesis and self-assembly of perylenediimide-oligonucleotide conjugates. , 2004, Angewandte Chemie.

[32]  Jung Woon Yang,et al.  Synthesis of DNA triangles with vertexes of bis(terpyridine)iron(II) complexes. , 2004, Journal of the American Chemical Society.

[33]  K. Gothelf,et al.  Self-assembly of aluminium-salen coupled nanostructures from encoded modules with cleavable disulfide DNA-linkers. , 2004, Chemical communications.

[34]  Jun Xu,et al.  Structure and Properties of DNA-Based Reversible Polymers , 2004 .

[35]  Kurt V Gothelf,et al.  Modular DNA-programmed assembly of linear and branched conjugated nanostructures. , 2004, Journal of the American Chemical Society.

[36]  Jean-Luc Brédas,et al.  Single-electron transistor of a single organic molecule with access to several redox states , 2003, Nature.

[37]  N. Seeman DNA in a material world , 2003, Nature.

[38]  G. Shen,et al.  Fluorescence Spectral Study of Interaction of Water-soluble Metal Complexes of Schiff-base and DNA , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[39]  T. Sheppard,et al.  Nucleic acid template-directed assembly of metallosalen-DNA conjugates. , 2001, Journal of the American Chemical Society.

[40]  C. Murphy,et al.  Oligonucleotide-directed assembly of materials: defined oligomers. , 2001, Journal of the American Chemical Society.

[41]  Jason D. Monnell,et al.  Conductance Switching in Single Molecules Through , 2001 .

[42]  G. Shen,et al.  Interaction of Metal Complexes of Bis(salicylidene)-ethylenediamine with DNA , 2000 .

[43]  C. Niemeyer,et al.  Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology. , 2000, Current opinion in chemical biology.

[44]  R. C. Elder Tridentate and unsymmetrical tetradentate Schiff base ligands from salicylaldehydes and diamines: Their monomeric and dimeric nickel(II) complexes , 1978 .

[45]  Y. Tohda,et al.  A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines , 1975 .

[46]  J. Druey,et al.  Heilmittelchemische Studien in der heterocyclischen Reihe. 26. Mitteilung , 1959 .

[47]  J. Druey,et al.  Heilmittelchemische Studien in der heterocyclischen Reihe. 18. Mitteilung. Über Polymethylen‐bis‐sydnone und Polymethylen‐bis‐hydrazine , 1957 .