NaI(Tl) Detector Efficiency Computation Using Radioactive Parallelepiped Sources Based on Efficiency Transfer Principle

The efficiency transfer (ET) principle is considered as a simple numerical simulation method, which can be used to calculate the full-energy peak efficiency (FEPE) of NaI(Tl) scintillation detector over a wide energy range. In this work, the calculations of FEPE are based on computing the effective solid angle ratio between a radioactive point and parallelepiped sources located at various distances from the detector surface. Besides, the attenuation of the photon by the source-to-detector system (detector material, detector end cap, and holder material) was considered and determined. This method is straightforwardly useful in setting up the efficiency calibration curve for NaI(Tl) scintillation detector, when no calibration sources exist in volume shape. The values of the efficiency calculations using theoretical method are compared with the measured ones and the results show that the discrepancies in general for all the measurements are found to be less than 6%.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  M. M. Gouda,et al.  A numerical approach to calculate the full-energy peak efficiency of HPGe well-type detectors using the effective solid angle ratio , 2014 .

[3]  A. El-Khatib,et al.  STUDY ON THE EFFECT OF THE SELF-ATTENUATION COEFFICIENT ON γ-RAY DETECTOR EFFICIENCY CALCULATED AT LOW AND HIGH ENERGY REGIONS , 2014 .

[4]  A. El-Khatib,et al.  New numerical simulation approach to calibrate the NaI(Tl) detectors array using non-axial extended spherical sources , 2013 .

[5]  A. El-Khatib,et al.  Studying the full energy peak efficiency for a two γ-detectors combination of different dimensions , 2013 .

[6]  M. M. Gouda,et al.  New analytical approach to calibrate the NaI (Tl) detectors using spherical radioactive sources. , 2013, Radiation protection dosimetry.

[7]  A. El-Khatib,et al.  An empirical formula to calculate the full energy peak efficiency of scintillation detectors. , 2013, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[8]  M. M. Gouda,et al.  New analytical approach to calibrate the co-axial HPGe detectors including correction for source matrix self-attenuation. , 2012, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[9]  A. Hamzawy Simple analytical formula to calculate γ-ray cylindrical detectors efficiencies , 2010 .

[10]  D. Arnold,et al.  On the Monte Carlo simulation of HPGe gamma-spectrometry systems. , 2009, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[11]  K B Lee,et al.  An intercomparison of Monte Carlo codes used in gamma-ray spectrometry. , 2008, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[12]  N. C. Díaz,et al.  Monte Carlo simulation of the self-absorption corrections for natural samples in gamma-ray spectrometry. , 2002, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[13]  M. F. Stroosnijder,et al.  Reliability of two calculation codes for efficiency calibrations of HPGe detectors. , 2002, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[14]  Dirk Arnold,et al.  GESPECOR: A versatile tool in gamma-ray spectrometry , 2001 .

[15]  Girard,et al.  Monte Carlo calculation of the efficiency calibration curve and coincidence-summing corrections in low-level gamma-ray spectrometry using well-type HPGe detectors , 2000, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[16]  M. Abbas,et al.  Direct calculation of the total efficiency of cylindrical scintillation detectors for extended circular sources , 1996 .

[17]  J. Hoste,et al.  Calculation of the peak efficiency of high-purity germanium detectors , 1983 .

[18]  F. Corte,et al.  Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries , 1981 .

[19]  A. El-Khatib,et al.  A new mathematical model for determining full-energy peak efficiency of an array of two gamma detectors counting rectangular parallelepiped sources , 2013 .

[20]  M. Korun Measurement of the average path length of gamma-rays in samples using scattered radiation. , 2002, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.