Visual measurement cues for face tracking

Particle filters allow for visual trackers with nonlinear measurements. In this paper we consider three different non-linear visual measurement cues, based on object detection, foreground segmentation and colour matching. Novel ways to obtain robust measurement likelihoods under a unified representation scheme are discussed, followed by a likelihood combination scheme for fusion. The resulting single and multi-cue particle filter trackers are compared in the scope of face tracking.

[1]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Alain Crouzil,et al.  Non-rigid object localization from color model using mean shift , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[3]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[4]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[5]  Patrick Pérez,et al.  Data fusion for visual tracking with particles , 2004, Proceedings of the IEEE.

[6]  Lifeng Sun,et al.  A cascade SVM approach for head-shoulder detection using histograms of oriented gradients , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[7]  James M. Rehg,et al.  Statistical Color Models with Application to Skin Detection , 2004, International Journal of Computer Vision.

[8]  Aristodemos Pnevmatikakis,et al.  Person Tracking , 2009, Computers in the Human Interaction Loop.

[9]  Montse Pardàs,et al.  Shadow removal with blob-based morphological reconstruction for error correction , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[10]  Anthony G. Constantinides,et al.  Audio-Visual Person Tracking - A Practical Approach , 2011, Communications and Signal Processing.

[11]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[12]  A. Pnevmatikakis,et al.  Robust Estimation of Background for Fixed Cameras , 2006, 2006 15th International Conference on Computing.

[13]  Alexander H. Waibel CHIL - Computers in the Human Interaction Loop , 2005, MVA.

[14]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.