Frontal eye field contributions to rapid corrective saccades.

Visually guided movements can be inaccurate, especially if unexpected events occur while the movement is programmed. Often errors of gaze are corrected before external feedback can be processed. Evidence is presented from macaque monkey frontal eye field (FEF), a cortical area that selects visual targets, allocates attention, and programs saccadic eye movements, for a neural mechanism that can correct saccade errors before visual afferent or performance monitoring signals can register the error. Macaques performed visual search for a color singleton that unpredictably changed position in a circular array as in classic double-step experiments. Consequently, some saccades were directed in error to the original target location. These were followed frequently by unrewarded, corrective saccades to the final target location. We previously showed that visually responsive neurons represent the new target location even if gaze shifted errantly to the original target location. Now we show that the latency of corrective saccades is predicted by the timing of movement-related activity in the FEF. Preceding rapid corrective saccades, the movement-related activity of all neurons began before explicit error signals arise in the medial frontal cortex. The movement-related activity of many neurons began before visual feedback of the error was registered and that of a few neurons began before the error saccade was completed. Thus movement-related activity leading to rapid corrective saccades can be guided by an internal representation of the environment updated with a forward model of the error.

[1]  Dottie M. Clower,et al.  The Inferior Parietal Lobule Is the Target of Output from the Superior Colliculus, Hippocampus, and Cerebellum , 2001, The Journal of Neuroscience.

[2]  C L Colby,et al.  Visual, saccade-related, and cognitive activation of single neurons in monkey extrastriate area V3A. , 2000, Journal of neurophysiology.

[3]  Jeffrey D. Schall,et al.  From Attention to Action in Frontal Cortex , 2006 .

[4]  T. Pasternak,et al.  Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. , 1999, Cerebral cortex.

[5]  D. Munoz,et al.  Look away: the anti-saccade task and the voluntary control of eye movement , 2004, Nature Reviews Neuroscience.

[6]  R. Berman,et al.  Dynamic circuitry for updating spatial representations. II. Physiological evidence for interhemispheric transfer in area LIP of the split-brain macaque. , 2005, Journal of neurophysiology.

[7]  N. P. Bichot,et al.  Effects of similarity and history on neural mechanisms of visual selection , 1999, Nature Neuroscience.

[8]  W. Becker,et al.  An analysis of the saccadic system by means of double step stimuli , 1979, Vision Research.

[9]  M. Gazzaniga Perceptual and attentional processes following callosal section in humans , 1987, Neuropsychologia.

[10]  Joshua W. Brown,et al.  Performance Monitoring by the Anterior Cingulate Cortex During Saccade Countermanding , 2003, Science.

[11]  R. Guillery,et al.  Thalamic Relay Functions and Their Role in Corticocortical Communication Generalizations from the Visual System , 2002, Neuron.

[12]  J. Schall Visuomotor Areas of the Frontal Lobe , 1997 .

[13]  M. Goldberg,et al.  Representation of visuomotor space in the parietal lobe of the monkey. , 1990, Cold Spring Harbor symposia on quantitative biology.

[14]  R. Berman,et al.  Dynamic circuitry for updating spatial representations. I. Behavioral evidence for interhemispheric transfer in the split-brain macaque. , 2005, Journal of neurophysiology.

[15]  T. Yin,et al.  Homotopic and heterotopic callosal afferents of caudal inferior parietal lobule in Macaca mulatta , 1981, The Journal of comparative neurology.

[16]  G. Westheimer Eye movement responses to a horizontally moving visual stimulus. , 1954, A.M.A. archives of ophthalmology.

[17]  Veit Stuphorn,et al.  Chronometry of visual responses in frontal eye field, supplementary eye field, and anterior cingulate cortex. , 2005, Journal of neurophysiology.

[18]  M. Paré,et al.  Temporal processing of saccade targets in parietal cortex area LIP during visual search. , 2007, Journal of neurophysiology.

[19]  J. Assad,et al.  Neural coding of behavioral relevance in parietal cortex , 2003, Current Opinion in Neurobiology.

[20]  Michael C. Corballis,et al.  Visual integration in the split brain , 1995, Neuropsychologia.

[21]  J-C Houzel,et al.  Interhemispheric connections between primary visual areas: beyond the midline rule. , 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[22]  P. Rakić,et al.  Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey , 1990, The Journal of comparative neurology.

[23]  Jeffrey D. Holtzman,et al.  Interactions between cortical and subcortical visual areas: Evidence from human commissurotomy patients , 1984, Vision Research.

[24]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[25]  J. L. Conway,et al.  Effects of frontal eye field and superior colliculus ablations on eye movements. , 1979, Science.

[26]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[27]  J. Schall,et al.  Countermanding saccades in macaque , 1995, Visual Neuroscience.

[28]  D. Pandya,et al.  Interhemispheric projections of the parietal lobe in the rhesus monkey. , 1969, Brain research.

[29]  René Müri,et al.  Craniotopic updating of visual space across saccades in the human posterior parietal cortex , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  G. Rizzolatti,et al.  Binocularly Driven Neurons in Visual Cortex of Split-Chiasm Cats , 1968, Science.

[31]  D. Sparks,et al.  Dissociation of visual and saccade-related responses in superior colliculus neurons. , 1980, Journal of neurophysiology.

[32]  Joel L. Davis,et al.  Visual attention and cortical circuits , 2001 .

[33]  Joyce Vliegen,et al.  Dynamic Sound Localization during Rapid Eye-Head Gaze Shifts , 2004, The Journal of Neuroscience.

[34]  M. Goldberg,et al.  Functional properties of corticotectal neurons in the monkey's frontal eye field. , 1987, Journal of neurophysiology.

[35]  D. N. Pandya,et al.  The distribution of posterior parietal fibers in the corpus callosum of the rhesus monkey , 2004, Experimental Brain Research.

[36]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[37]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. , 1991, Journal of neurophysiology.

[38]  R. Wurtz,et al.  Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. , 2001, Journal of neurophysiology.

[39]  Robert M. McPeek,et al.  Incomplete Suppression of Distractor-Related Activity in the Frontal Eye Field Results in Curved Saccades , 2006 .

[40]  R. Sperry,et al.  Some functional effects of sectioning the cerebral commissures in man* , 1962, Proceedings of the National Academy of Sciences.

[41]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[42]  C. Bruce,et al.  Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. , 1990, Journal of neurophysiology.

[43]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[44]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[45]  M. Peters,et al.  The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum , 2004 .

[46]  R. McPeek Incomplete suppression of distractor-related activity in the frontal eye field results in curved saccades. , 2010, Journal of neurophysiology.

[47]  J. Schall Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. , 1991, Journal of neurophysiology.

[48]  James J DiCarlo,et al.  Using neuronal latency to determine sensory-motor processing pathways in reaction time tasks. , 2005, Journal of neurophysiology.

[49]  P. Rabbitt Errors and error correction in choice-response tasks. , 1966, Journal of experimental psychology.

[50]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. II. Memory responses. , 2001, Journal of neurophysiology.

[51]  R. Andersen,et al.  Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory. , 1996, Journal of neurophysiology.

[52]  A J Van Opstal,et al.  Local feedback signals are not distorted by prior eye movements: evidence from visually evoked double saccades. , 1997, Journal of neurophysiology.

[53]  W. Newsome,et al.  Representation of an abstract perceptual decision in macaque superior colliculus. , 2004, Journal of neurophysiology.

[54]  E. Keller,et al.  Short-term priming, concurrent processing, and saccade curvature during a target selection task in the monkey , 2001, Vision Research.

[55]  Mingsha Zhang,et al.  Neuronal switching of sensorimotor transformations for antisaccades , 2000, Nature.

[56]  Paul Dassonville,et al.  The use of egocentric and exocentric location cues in saccadic programming , 1995, Vision Research.

[57]  Takashi R Sato,et al.  Effects of search efficiency on surround suppression during visual selection in frontal eye field. , 2004, Journal of neurophysiology.

[58]  V. Walsh,et al.  Visual field asymmetries in attention and learning. , 2000, Spatial vision.

[59]  R. Shadmehr,et al.  Why Does the Brain Predict Sensory Consequences of Oculomotor Commands? Optimal Integration of the Predicted and the Actual Sensory Feedback , 2006, The Journal of Neuroscience.

[60]  P. Reuter-Lorenz,et al.  Orienting Attention across the Vertical Meridian: Evidence from Callosotomy Patients , 1990, Journal of Cognitive Neuroscience.

[61]  G. Logan On the ability to inhibit thought and action , 1984 .

[62]  W. Heide,et al.  Cortical control of double‐step saccades: Implications for spatial orientation , 1995, Annals of neurology.

[63]  M. Goldberg,et al.  Saccadic dysmetria in a patient with a right frontoparietal lesion. The importance of corollary discharge for accurate spatial behaviour. , 1992, Brain : a journal of neurology.

[64]  R. Wurtz,et al.  Signal transformations from cerebral cortex to superior colliculus for the generation of saccades , 2001, Vision Research.

[65]  Takashi R Sato,et al.  Search Efficiency but Not Response Interference Affects Visual Selection in Frontal Eye Field , 2001, Neuron.

[66]  I Daum,et al.  The role of the human thalamus in processing corollary discharge. , 2005, Brain : a journal of neurology.

[67]  W. Fries Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase , 1984, The Journal of comparative neurology.

[68]  A M Graybiel,et al.  The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus , 1985, The Journal of comparative neurology.

[69]  J D Schall,et al.  Dynamic dissociation of visual selection from saccade programming in frontal eye field. , 2001, Journal of neurophysiology.

[70]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[71]  E. Keller,et al.  Saccade target selection in the superior colliculus during a visual search task. , 2002, Journal of neurophysiology.

[72]  J. Maunsell,et al.  Attentional Modulation of Behavioral Performance and Neuronal Responses in Middle Temporal and Ventral Intraparietal Areas of Macaque Monkey , 2002, The Journal of Neuroscience.

[73]  D Sagi,et al.  Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[75]  J. Assad,et al.  Dynamic coding of behaviourally relevant stimuli in parietal cortex , 2002, Nature.

[76]  Laure Pisella,et al.  The contribution of spatial remapping impairments to unilateral visual neglect , 2004, Neuroscience & Biobehavioral Reviews.

[77]  Neeraj J Gandhi,et al.  Simulations of saccade curvature by models that place superior colliculus upstream from the local feedback loop. , 2005, Journal of neurophysiology.

[78]  Emad N Eskandar,et al.  Parietal activity and the perceived direction of ambiguous apparent motion , 2003, Nature Neuroscience.

[79]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[81]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[82]  J. L. Conway,et al.  Deficits in eye movements following frontal eye-field and superior colliculus ablations. , 1980, Journal of neurophysiology.

[83]  L L Wheeless,et al.  Eye-movement responses to step and pulse-step stimuli. , 1966, Journal of the Optical Society of America.

[84]  M. Goldberg,et al.  Activity in the Lateral Intraparietal Area Predicts the Goal and Latency of Saccades in a Free-Viewing Visual Search Task , 2006, The Journal of Neuroscience.

[85]  Lawrence H Snyder,et al.  Spatial memory following shifts of gaze. I. Saccades to memorized world-fixed and gaze-fixed targets. , 2003, Journal of neurophysiology.

[86]  W. Newsome,et al.  Matching Behavior and the Representation of Value in the Parietal Cortex , 2004, Science.

[87]  A. Fuchs,et al.  Effect of mean reaction time on saccadic responses to two-step stimuli with horizontal and vertical components , 1975, Vision Research.

[88]  R. Berman,et al.  Corollary discharge and spatial updating: when the brain is split, is space still unified? , 2004, Progress in brain research.

[89]  J. Kaas,et al.  The Primate visual system , 2003 .

[90]  Jonathan D. Cohen,et al.  Conflict monitoring and anterior cingulate cortex: an update , 2004, Trends in Cognitive Sciences.

[91]  R. Wurtz,et al.  Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus. , 2001, Journal of neurophysiology.

[92]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[93]  M. Shadlen,et al.  Representation of Time by Neurons in the Posterior Parietal Cortex of the Macaque , 2003, Neuron.

[94]  P S Goldman-Rakic,et al.  Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: Relation between intraparietal and principal sulcal cortex , 1984, The Journal of comparative neurology.

[95]  Jeffrey D Schall,et al.  The neural selection and control of saccades by the frontal eye field. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[96]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[97]  Emad N Eskandar,et al.  Distinct nature of directional signals among parietal cortical areas during visual guidance. , 2002, Journal of neurophysiology.

[98]  W T Newsome,et al.  Separate signals for target selection and movement specification in the superior colliculus. , 1999, Science.

[99]  Guy A. Orban,et al.  Hemispheric lateralization in rhesus monkeys can be task-dependent , 1994, Neuropsychologia.

[100]  D. Sparks,et al.  Population coding of saccadic eye movements by neurons in the superior colliculus , 1988, Nature.

[101]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[103]  Chi-Hung Juan,et al.  Dissociation of spatial attention and saccade preparation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[104]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. , 1983, Journal of neurophysiology.

[105]  H. Pashler Dual-task interference in simple tasks: data and theory. , 1994, Psychological bulletin.

[106]  J. Schall,et al.  Performance monitoring by the supplementary eye ® eld , 2000 .

[107]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[108]  R. Guillery Branching thalamic afferents link action and perception. , 2003, Journal of neurophysiology.

[109]  P. E. Hallett,et al.  Retinal eccentricity and the latency of eye saccades , 1994, Vision Research.

[110]  T. Vilis,et al.  Gaze-Centered Updating of Visual Space in Human Parietal Cortex , 2003, The Journal of Neuroscience.

[111]  A. Osman,et al.  Dimensional overlap: cognitive basis for stimulus-response compatibility--a model and taxonomy. , 1990, Psychological review.

[112]  A. J. Van Opstal,et al.  Three-dimensional analysis of strongly curved saccades elicited by double-step stimuli , 2004, Experimental Brain Research.

[113]  T. Pasternak,et al.  Training-induced recovery of visual motion perception after extrastriate cortical damage in the adult cat. , 2004, Cerebral cortex.

[114]  J D Holtzman,et al.  Dissociation of spatial information for stimulus localization and the control of attention. , 1981, Brain : a journal of neurology.

[115]  M. Merzenich,et al.  Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[116]  P. E. Hallett,et al.  Saccadic eye movements to flashed targets , 1976, Vision Research.

[117]  Virginia A. Diggles,et al.  Rapid error correction during human arm movements: evidence for central monitoring. , 1984, Journal of motor behavior.

[118]  Y. Miyashita,et al.  Callosal window between prefrontal cortices: cognitive interaction to retrieve long-term memory. , 1998, Science.

[119]  D L Rosene,et al.  Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques , 1990, The Journal of comparative neurology.

[120]  R. Andersen,et al.  Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task , 2001, Experimental Brain Research.

[121]  Takashi R Sato,et al.  Effects of Stimulus-Response Compatibility on Neural Selection in Frontal Eye Field , 2003, Neuron.

[122]  N. P. Bichot,et al.  Dissociation of visual discrimination from saccade programming in macaque frontal eye field. , 1997, Journal of neurophysiology.

[123]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[124]  J. Schall On building a bridge between brain and behavior. , 2004, Annual review of psychology.

[125]  R. Wurtz,et al.  Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. , 2002, Journal of neurophysiology.

[126]  Robert M. McPeek,et al.  Superior colliculus activity related to concurrent processing of saccade goals in a visual search task. , 2002, Journal of neurophysiology.

[127]  Y. Miyashita,et al.  Top-down signal from prefrontal cortex in executive control of memory retrieval , 1999, Nature.

[128]  Robert M McPeek,et al.  Competition between saccade goals in the superior colliculus produces saccade curvature. , 2003, Journal of neurophysiology.

[129]  D. B. Bender,et al.  Comparison of saccadic eye movements in humans and macaques to single-step and double-step target movements , 1989, Vision Research.

[130]  R. Wurtz,et al.  Interaction of the frontal eye field and superior colliculus for saccade generation. , 2001, Journal of neurophysiology.

[131]  M. Segraves,et al.  Macaque frontal eye field input to saccade-related neurons in the superior colliculus. , 2003, Journal of neurophysiology.

[132]  Paul W. Glimcher,et al.  Response fields of intraparietal neurons quantified with multiple saccadic targets , 1998, Experimental Brain Research.

[133]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[134]  Christian Quaia,et al.  The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields , 1998, Neural Networks.

[135]  C. J. Erkelens,et al.  Control of fixation duration in a simple search task , 1996, Perception & psychophysics.

[136]  M. Goldberg,et al.  Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. , 1995, Journal of neurophysiology.

[137]  O. L. Zangwill,et al.  DISORDERS OF VISUAL SPACE PERCEPTION ASSOCIATED WITH LESIONS OF THE RIGHT CEREBRAL HEMISPHERE , 1944 .

[138]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[139]  R. Wurtz,et al.  Sequential activity of simultaneously recorded neurons in the superior colliculus during curved saccades. , 2003, Journal of neurophysiology.

[140]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[141]  Robert M. McPeek,et al.  Concurrent processing of saccades in visual search , 2000, Vision Research.

[142]  R. Wurtz,et al.  Superior Colliculus Cell Responses Related to Eye Movements in Awake Monkeys , 1971, Science.

[143]  S Kornblum,et al.  Does motor programming necessitate response execution? , 1990, Journal of experimental psychology. Human perception and performance.

[144]  R. Wurtz,et al.  Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. , 1997, Journal of neurophysiology.

[145]  D. Munoz,et al.  Influence of stimulus eccentricity and direction on characteristics of pro- and antisaccades in non-human primates. , 2000, Journal of neurophysiology.

[146]  Richard A. Andersen,et al.  Sensorimotor transformation during eye movements to remembered visual targets , 1991, Vision Research.

[147]  L Matin,et al.  Visual perception of direction and voluntary saccadic eye movements. , 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.

[148]  J. Schall,et al.  Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[149]  P. E. Hallett,et al.  Saccadic eye movements towards stimuli triggered by prior saccades , 1976, Vision Research.

[150]  J. Schall,et al.  Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. , 1998, Journal of neurophysiology.

[151]  D. Sparks,et al.  Size and distribution of movement fields in the monkey superior colliculus , 1976, Brain Research.

[152]  W. Brown,et al.  Spatial attention in agenesis of the corpus callosum: shifting attention between visual fields , 2002, Neuropsychologia.

[153]  Michael S. Gazzaniga,et al.  Cortical field of origin of the anterior commissure of the rhesus monkey , 1979, Experimental Neurology.

[154]  R. Wurtz,et al.  What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. , 2004, Journal of neurophysiology.

[155]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[156]  Jacqueline Gottlieb,et al.  The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance , 2000, Vision Research.

[157]  D. P. Hanes,et al.  Controlled Movement Processing: Superior Colliculus Activity Associated with Countermanded Saccades , 2003, The Journal of Neuroscience.

[158]  Laurence R. Harris,et al.  Small Saccades to Double-Stepped Targets Moving in Two Dimensions , 1984 .

[159]  M. Goldberg,et al.  Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task , 1999, Nature Neuroscience.

[160]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[161]  P. Schiller,et al.  Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. , 1972, Journal of neurophysiology.

[162]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[163]  J. Stern Theoretical and applied aspects of eye movement research A. G. Gale and F. Johnson, (Elsevier Science Publishers B.V., Amsterdam, 1984) pp. xiii + 565, Dfl. 185 , 1985, Biological Psychology.

[164]  M Mishkin,et al.  A role for the corpus callosum in visual area V4 of the macaque , 1993, Visual Neuroscience.

[165]  C. Colby Action-Oriented Spatial Reference Frames in Cortex , 1998, Neuron.

[166]  P. Glimcher,et al.  Activity in Posterior Parietal Cortex Is Correlated with the Relative Subjective Desirability of Action , 2004, Neuron.

[167]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[168]  D. B. Bender,et al.  Contributions of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons , 1977, Brain Research.

[169]  D. Sparks,et al.  Spatial localization of saccade targets. I. Compensation for stimulation-induced perturbations in eye position. , 1983, Journal of neurophysiology.

[170]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[171]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[172]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[173]  Samuel W. Fernberger,et al.  Reaction Time To Retinal Stimulation: With Special Reference To The Time Lost In Conduction Through Nerve Centers... , 2009 .

[174]  David E. Irwin,et al.  Influence of attentional capture on oculomotor control. , 1999, Journal of experimental psychology. Human perception and performance.

[175]  Interhemispheric transfer of visual learning in monkeys with intact optic chiasm , 2004, Experimental Brain Research.

[176]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[177]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[178]  R. Wurtz,et al.  What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. , 2004, Journal of neurophysiology.

[179]  A. Murthy,et al.  Programming of double-step saccade sequences: Modulation by cognitive control , 2004, Vision Research.

[180]  D. Burr,et al.  Changes in visual perception at the time of saccades , 2001, Trends in Neurosciences.

[181]  Etienne Olivier,et al.  A Deficit in Covert Attention after Parietal Cortex Inactivation in the Monkey , 2004, Neuron.

[182]  E. Bisiach,et al.  Unilateral Neglect of Representational Space , 1978, Cortex.

[183]  C. Pierrot-Deseilligny,et al.  Eye movement control by the cerebral cortex , 2004, Current opinion in neurology.

[184]  M. Coles,et al.  "Where did I go wrong?" A psychophysiological analysis of error detection. , 1995, Journal of experimental psychology. Human perception and performance.

[185]  F. Previc Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications , 1990, Behavioral and Brain Sciences.

[186]  M. Segraves Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. , 1992, Journal of neurophysiology.

[187]  P. Viviani,et al.  Saccadic eye movements to peripherally discriminated visual targets. , 1982, Journal of experimental psychology. Human perception and performance.

[188]  C. Colby,et al.  Spatial updating in area LIP is independent of saccade direction. , 2006, Journal of neurophysiology.

[189]  D. Hubel,et al.  Colour-generating interactions across the corpus callosum , 1983, Nature.

[190]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.