Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

S. Hamilton | G. Johnson | N. Kitchen | M. McClaran | M. Schipanski | J. Derner | C. Creech | J. Strock | E. Aberle | F. Larney | A. Sadeghpour | J. Foster | S. Culman | U. Sainju | C. Dell | S. Fonte | D. Watts | S. Duiker | W. Schillinger | V. Sykes | A. Ashworth | N. Verhulst | A. Schlegel | W. May | B. Ellert | Hanna J. Poffenbarger | C. Morgan | A. Suyker | M. Reiter | A. Moore | M. Liebman | P. Moore | N. Honsdorf | R. Baumhardt | K. Nelson | X. Hao | B. Maharjan | J. Reeve | K. Scow | C. Honeycutt | K. Roozeboom | S. Machado | L. Sherrod | G. Sanford | E. Omondi | R. Schindelbeck | M. Dyck | J. Ippolito | T. Ducey | M. McDaniel | D. Liptzin | J. Grove | B. Deen | Haiying Tao | S. Osborne | D. Brainard | C. Carlyle | A. Bary | C. Norris | T. Vyn | Yutao Wang | J. Howe | E. Rieke | S. Sidhu | Katie L. Lewis | A. Shober | D. L. Wright | E. Pena‐Yewtukhiw | L. Fultz | Tiequan Zhang | A. Fortuna | C. Geddes | Z. Hayden | M. St. Luce | J. Brennan | L. V. Van Eerd | T. Reinbott | K. Kurtz | N. Millar | S. Fonteyne | E. Ritchey | A. Gamble | Miguel Angel Martínez Gamiño | Michael Cope | S. Cappellazzi | K. Greub | P. Tracy | D. Bruhjell | J. Crawford | Deirdre Griffin‐LaHue | J. Mitchell | Philip Owens | Oscar Bañuelos Tavarez | Alberto Borbón Gracia | D. Reyes | Avelino Espinosa Solorio | Mark A. Kautz | A. L. Ramirez | Manuel Mora Gutiérrez | L. O. Alcalá | Brenda Ponce Lira | E. S. Moya | G. Mac Bean | Y. Rui | Sandeep Kum ar | A. T. Campos | Bryan B. William | James J. W. Crawford | Nora Honsdorf

[1]  S. Hamilton,et al.  An evaluation of carbon indicators of soil health in long-term agricultural experiments , 2022, Soil Biology and Biochemistry.

[2]  N. Fierer,et al.  How microbes can, and cannot, be used to assess soil health , 2020, Soil Biology and Biochemistry.

[3]  D. Schneider,et al.  Globally Abundant “Candidatus Udaeobacter” Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging , 2020, mSphere.

[4]  Kristen S. Veum,et al.  A comparison between fatty acid methyl ester profiling methods (PLFA and EL‐FAME) as soil health indicators , 2020 .

[5]  R. Cook,et al.  Microbial Communities Associated With Long-Term Tillage and Fertility Treatments in a Corn-Soybean Cropping System , 2020, Frontiers in Microbiology.

[6]  Kristen S. Veum,et al.  Biological soil health indicators respond to tillage intensity: A US meta-analysis , 2020 .

[7]  C. Morgan,et al.  Introducing the North American project to evaluate soil health measurements , 2020, Agronomy Journal.

[8]  C. Watts,et al.  Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land-use , 2020, Geoderma.

[9]  C. Crecchio,et al.  Soil Biological Fertility and Bacterial Community Response to Land Use Intensity: A Case Study in the Mediterranean Area , 2019, Diversity.

[10]  Jeffrey A. Coulter,et al.  Bacterial and fungal diversity in rhizosphere and bulk soil under different long-term tillage and cereal/legume rotation , 2019, Soil and Tillage Research.

[11]  W. Schillinger,et al.  Biosolids and Tillage Practices Influence Soil Bacterial Communities in Dryland Wheat , 2019, Microbial Ecology.

[12]  K. Scow,et al.  Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities , 2019, Soil Biology and Biochemistry.

[13]  Zhen Guo,et al.  Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure , 2019, PloS one.

[14]  L. Zibilske Carbon Mineralization , 2018, SSSA Book Series.

[15]  Glendon W. Gee,et al.  2.4 Particle-Size Analysis , 2018, SSSA Book Series.

[16]  Kate M. Buckeridge,et al.  Land use driven change in soil pH affects microbial carbon cycling processes , 2018, Nature Communications.

[17]  Jiabao Zhang,et al.  Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements , 2018 .

[18]  Jane M. F. Johnson,et al.  Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indices , 2018 .

[19]  J. Caporaso EMP 16S Illumina Amplicon Protocol , 2018 .

[20]  E. B. Haney,et al.  The soil health tool—Theory and initial broad-scale application , 2018 .

[21]  Fan Yang,et al.  Greatest soil microbial diversity found in micro-habitats , 2018 .

[22]  M. Delgado‐Baquerizo,et al.  New insights into the role of microbial community composition in driving soil respiration rates , 2018 .

[23]  K. Gravuer,et al.  Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil , 2018, PloS one.

[24]  Jesse R. Zaneveld,et al.  Normalization and microbial differential abundance strategies depend upon data characteristics , 2017, Microbiome.

[25]  J. Gilbert,et al.  Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’ , 2016, Nature Microbiology.

[26]  P. Blair,et al.  Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem , 2016, Ecology and evolution.

[27]  Tongli Wang,et al.  Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America , 2016, PloS one.

[28]  G. Kowalchuk,et al.  The Ecology of Acidobacteria: Moving beyond Genes and Genomes , 2016, Front. Microbiol..

[29]  Y. Liao,et al.  Conservation tillage increases soil bacterial diversity in the dryland of northern China , 2016, Agronomy for Sustainable Development.

[30]  Yendi E. Navarro-Noya,et al.  Bacterial indicator taxa in soils under different long‐term agricultural management , 2016, Journal of applied microbiology.

[31]  D. Tyler,et al.  Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality , 2015 .

[32]  P. Ciais,et al.  No-tillage lessens soil CO 2 emissions the most under arid and sandy soil conditions: results from a meta-analysis , 2015 .

[33]  W. Dick,et al.  Bacterial Community Diversity in Soil Under two Tillage Practices as Determined by Pyrosequencing , 2015, Microbial Ecology.

[34]  A. Klute,et al.  Methods of soil analysis , 2015, American Potato Journal.

[35]  M. Al‐Kaisi,et al.  Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems , 2014, Journal of Soil and Water Conservation.

[36]  Rob Knight,et al.  Reconstructing the Microbial Diversity and Function of Pre-Agricultural Tallgrass Prairie Soils in the United States , 2013, Science.

[37]  Yendi E. Navarro-Noya,et al.  Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem , 2013 .

[38]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[39]  Austin G. Davis-Richardson,et al.  The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol , 2012 .

[40]  Didier L. Baho,et al.  Fundamentals of Microbial Community Resistance and Resilience , 2012, Front. Microbio..

[41]  Rattan Lal,et al.  Permanganate Oxidizable Carbon Reflects a Processed Soil Fraction that is Sensitive to Management , 2012 .

[42]  J. Aitkenhead-Peterson,et al.  Impacts of Cropping Systems and Long-Term Tillage on Soil Microbial Population Levels and Community Composition in Dryland Agricultural Setting , 2012 .

[43]  K. Sowers,et al.  Desiccation as a Long-Term Survival Mechanism for the Archaeon Methanosarcina barkeri , 2011, Applied and Environmental Microbiology.

[44]  M. Liles,et al.  Recovery of As-Yet-Uncultured Soil Acidobacteria on Dilute Solid Media , 2011, Applied and Environmental Microbiology.

[45]  Scott T. Bates,et al.  The under-recognized dominance of Verrucomicrobia in soil bacterial communities. , 2011, Soil biology & biochemistry.

[46]  Davey L. Jones,et al.  Soil microbial biomass-Interpretation and consideration for soil monitoring , 2011 .

[47]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[48]  Kenneth L. Jones,et al.  Members of soil bacterial communities sensitive to tillage and crop rotation , 2010 .

[49]  E. B. Haney,et al.  Modifications to the New Soil Extractant H3A-1: A Multinutrient Extractant , 2010 .

[50]  B. Govaerts,et al.  Phylogenetic and Multivariate Analyses To Determine the Effects of Different Tillage and Residue Management Practices on Soil Bacterial Communities , 2010, Applied and Environmental Microbiology.

[51]  Christian L. Lauber,et al.  The influence of soil properties on the structure of bacterial and fungal communities across land-use types , 2008 .

[52]  S. Allison,et al.  Resistance, resilience, and redundancy in microbial communities , 2008, Proceedings of the National Academy of Sciences.

[53]  G. Robertson,et al.  Land-Use Intensity Effects on Soil Organic Carbon Accumulation Rates and Mechanisms , 2007, Ecosystems.

[54]  P. Janssen Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes , 2006, Applied and Environmental Microbiology.

[55]  T. Sakamoto,et al.  Crucial Role of Extracellular Polysaccharides in Desiccation and Freezing Tolerance in the Terrestrial Cyanobacterium Nostoc commune , 2005, Applied and Environmental Microbiology.

[56]  Douglas L. Karlen,et al.  The Soil Management Assessment Framework , 2004 .

[57]  P. Dixon VEGAN, a package of R functions for community ecology , 2003 .

[58]  N. Fierer,et al.  A Proposed Mechanism for the Pulse in Carbon Dioxide Production Commonly Observed Following the Rapid Rewetting of a Dry Soil , 2003 .

[59]  R. Allen,et al.  History and Evaluation of Hargreaves Evapotranspiration Equation , 2003 .

[60]  M. Firestone,et al.  Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp , 1992, Applied and environmental microbiology.

[61]  A. Tanaka,et al.  Quantitative observation on the root system of various crops growing in the field , 1990 .

[62]  D. W. Nelson,et al.  Total Carbon, Organic Carbon, and Organic Matter , 1983, SSSA Book Series.

[63]  A. Dreimanis Quantitative Gasometric Determination of Calcite and Dolomite by Using Chittick Apparatus , 1962 .

[64]  Keith Paustian,et al.  Management Controls on Soil Carbon , 2019, Soil Organic Matter in Temperate Agroecosystems.

[65]  M. Kleber,et al.  How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference , 2015 .

[66]  D. Murphy,et al.  What is soil biological fertility , 2007 .

[67]  Jost Wingender,et al.  What are Bacterial Extracellular Polymeric Substances , 1999 .

[68]  R. Reynolds,et al.  HISTORY AND EVALUATION , 1998 .

[69]  L. L. Somani,et al.  Soil microbial biomass. , 1994 .

[70]  E. Clercq Frontiers in Microbiology , 1987, New Perspectives in Clinical Microbiology.