Controllable conversion of biomass to lignin-silica hybrid nanoparticles: High-performance renewable dual-phase fillers.

[1]  Zhen Huang,et al.  Effects of different porous fillers on interfacial properties of poly (vinyl alcohol) hybrid films , 2021 .

[2]  Darren J. Martin,et al.  Toughening of natural rubber nanocomposites by the incorporation of nanoscale lignin combined with an industrially relevant leaching process , 2021 .

[3]  M. Camassola,et al.  Lignin nanoparticles enter the scene: A promising versatile green tool for multiple applications. , 2020, Biotechnology advances.

[4]  Xiyan He,et al.  Triangular pyramidal nano-Ag: Fabrication and properties of superamphiphobic surface on 1060 aluminum alloy mesh , 2020 .

[5]  A. Rodrigues,et al.  Recovery of vanillin from kraft lignin depolymerization with water as desorption eluent , 2020 .

[6]  R. Varma,et al.  Greener synthesis of lignin nanoparticles and their applications , 2020 .

[7]  Jingliang Xu,et al.  Structural regulation of lignin/silica nanocomposites by altering the content of quaternary ammonium groups grafted into softwood kraft lignin , 2020 .

[8]  M. Hussin,et al.  Lignin as Alternative Reinforcing Filler in the Rubber Industry: A Review , 2020, Frontiers in Materials.

[9]  Xiaofeng Wang,et al.  Self-assembled lignin-silica hybrid material derived from rice husks as the sustainable reinforcing fillers for natural rubber. , 2019, International journal of biological macromolecules.

[10]  P. Potiyaraj,et al.  A Review on Recent Trends and Future Prospects of Lignin Based Green Rubber Composites , 2019, Journal of Polymers and the Environment.

[11]  Yanguang Wu,et al.  Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber. , 2019, Waste management.

[12]  D. Barana,et al.  Simultaneous synthesis of cellulose nanocrystals and a lignin-silica biofiller from rice husk: Application for elastomeric compounds , 2019 .

[13]  Xiaofeng Wang,et al.  A facile ball milling method to produce sustainable pyrolytic rice husk bio-filler for reinforcement of rubber mechanical property , 2019 .

[14]  C. Wittmann,et al.  A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. , 2019, Biotechnology advances.

[15]  Oscar Rosales-Calderon,et al.  A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol , 2019, Biotechnology for Biofuels.

[16]  A. Kadam,et al.  Wheat straw extracted lignin in silver nanoparticles synthesis: Expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. , 2019, International journal of biological macromolecules.

[17]  H. Santos,et al.  Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications , 2018 .

[18]  D. Jia,et al.  The aggregation structure regulation of lignin by chemical modification and its effect on the property of lignin/styrene–butadiene rubber composites , 2018 .

[19]  Jinghui Zhou,et al.  Preparation, characterization and the adsorption characteristics of lignin/silica nanocomposites from cellulosic ethanol residue , 2017 .

[20]  G. Fowler,et al.  Potential of a Pyrolytic Coconut Shell as a Sustainable Biofiller for Styrene–Butadiene Rubber , 2017 .

[21]  Jinghui Zhou,et al.  Structural changes of poplar wood lignin after supercritical pretreatment using carbon dioxide and ethanol–water as co-solvents , 2017 .

[22]  Y. Ikeda,et al.  Reinforcing biofiller “Lignin” for high performance green natural rubber nanocomposites , 2017 .

[23]  D. Bonn,et al.  Filler Size Effects on Reinforcement in Elastomer-Based Nanocomposites: Experimental and Simulational Insights into Physical Mechanisms , 2016 .

[24]  Shenghui Tian,et al.  A comprehensive study on lignin as a green alternative of silica in natural rubber composites , 2016 .

[25]  Syed Danish Ali,et al.  Influence of Lignin Features on Thermal Stability and Mechanical Properties of Natural Rubber Compounds , 2016 .

[26]  J. J. Valle-Delgado,et al.  A simple process for lignin nanoparticle preparation , 2016 .

[27]  X. Qiu,et al.  Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method , 2015 .

[28]  Canhui Lu,et al.  Conductive natural rubber/carbon black nanocomposites via cellulose nanowhisker templated assembly: tailored hierarchical structure leading to synergistic property enhancements , 2015 .

[29]  D. Jia,et al.  In situ dispersion and compatibilization of lignin/epoxidized natural rubber composites: reactivity, morphology and property , 2015 .

[30]  S. Jana,et al.  Hybrid fillers of lignin and carbon black for lowering of viscoelastic loss in rubber compounds , 2014 .

[31]  S. Wen,et al.  Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites , 2014 .

[32]  L. Avérous,et al.  Chemical modification of lignins: Towards biobased polymers , 2014 .

[33]  S. Jana,et al.  Surface modification of lignosulfonates for reinforcement of styrene–butadiene rubber compounds , 2014 .

[34]  Q. Fu,et al.  Study on the Structures and Surface Forces of Different Carbon Blacks by Atomic Force Microscopy , 2014 .

[35]  Zhong-yang Luo,et al.  A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk , 2013 .

[36]  Zichen Wang,et al.  Synthesis of lignin-modified silica nanoparticles from black liquor of rice straw pulping , 2013 .

[37]  Si-Han Wu,et al.  Synthesis of mesoporous silica nanoparticles. , 2013, Chemical Society reviews.

[38]  Hui He,et al.  Nano-lignin filled natural rubber composites: Preparation and characterization , 2013 .

[39]  G. Beaucage,et al.  Rational design of reinforced rubber , 2002 .

[40]  S. Mann,et al.  Nanoscale Materials with Mesostructured Interiors , 2001 .