Solid-state nuclear magnetic resonance spectroscopy of cements

[1]  K. T. Greene Dicalcium silicate solid solutions , 1944 .

[2]  R. Bogue The chemistry of Portland cement , 1947 .

[3]  G. Pake Nuclear Resonance Absorption in Hydrated Crystals: Fine Structure of the Proton Line , 1948 .

[4]  J. Jeffery The crystal structure of tricalcium silicate , 1952 .

[5]  J. V. Vleck Line-breadths and the theory of magnetism , 1957 .

[6]  H. Taylor,et al.  Studies on 4CaOAl2.O3.13H2O and the Related Natural Mineral Hydrocalumite , 1959 .

[7]  E. Hahn,et al.  Nuclear Double Resonance in the Rotating Frame , 1962 .

[8]  L. Petrakis Spectral line shapes: Gaussian and Lorentzian functions in magnetic resonance , 1967 .

[9]  H. Taylor,et al.  Crystal Structures of the Lamellar Calcium Aluminate Hydrates , 1967, Nature.

[10]  G. Fuller Nuclear Spins and Moments , 1976 .

[11]  D. W. Goodwin,et al.  The crystal structure of CaO.2Al2O3 , 1970 .

[12]  H. Taylor,et al.  Crystal structure of ettringite , 1970 .

[13]  P. M. Raccah,et al.  Phase Transitions in Perovskitelike Compounds of the Rare Earths , 1970 .

[14]  H. Taylor,et al.  Crystal structure of thaumasite, [Ca3Si(OH)6.12H2O](SO4)(CO3) , 1971 .

[15]  G. Mascolo Hydration products of synthetic glasses similar to blast-furnace slags , 1973 .

[16]  A. White,et al.  Crystal structure of 'calcium sulphosilicate', Ca5(SiO4)2SO4 , 1974 .

[17]  W. Hörkner,et al.  Zur kristallstruktur von CaAl2O4 , 1976 .

[18]  W. Lukas Substitution of Si in the lattice of ettringite , 1976 .

[19]  K. Jošt,et al.  Redetermination of the structure of -dicalcium silicate , 1977 .

[20]  R. Blinc,et al.  NMR Relaxation Study of Adsorbed Water in Cement and C3S Pastes , 1978 .

[21]  M. Mathew,et al.  Crystal structure of a struvite analogue, MgKPO4.6H2O , 1979 .

[22]  W. Wieker,et al.  Hochauflösende 29Si-NMR an festen Silicaten: Anisotropie der chemischen Verschiebung im Thaumasit , 1980 .

[23]  É. Lippmaa,et al.  Structural studies of silicates by solid-state high-resolution silicon-29 NMR , 1980 .

[24]  W. Gessner,et al.  Zur Koordination des Aluminiums in den Calciumaluminathydraten 2 CaO · Al2O3 · 8 H2O und CaO · Al2O3 · 10 H2O , 1982 .

[25]  G. K. Moir Improvements in the early strength properties of Portland cement , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[26]  É. Lippmaa,et al.  Solid-state high-resolution silicon-29 chemical shifts in silicates , 1984 .

[27]  I. Maki,et al.  Tricalcium Silicate Ca3O[SIO4]: The monoclinic superstructure , 1985 .

[28]  E. Sonnenthal,et al.  Hydrotalcite observed in mortars exposed to sulfate solutions , 1985 .

[29]  L. Schreiner,et al.  NMR Line Shape-Spin-Lattice Relaxation Correlation Study of Portland Cement Hydration , 1985 .

[30]  A. Samoson Satellite transition high-resolution NMR of quadrupolar nuclei in powders , 1985 .

[31]  M. Bowden,et al.  Outstanding Problems in the Kaolinite‐Mullite Reaction Sequence Investigated by 29Si and 27Al Solid‐state Nuclear Magnetic Resonance: I, Metakaolinite , 1985 .

[32]  A. Bax,et al.  Sensitivity-enhanced two-dimensional heteronuclear shift correlation NMR spectroscopy , 1986 .

[33]  H. Taylor Proposed Structure for Calcium Silicate Hydrate Gel , 1986 .

[34]  É. Lippmaa,et al.  Solid-state 27Al NMR studies on polycrystalline aluminates of the system CaO-Al2O3 , 1986 .

[35]  S. Diamond Particle morphologies in fly ash , 1986 .

[36]  D. Ho,et al.  Carbonation of concrete and its prediction , 1987 .

[37]  E. E. Berry,et al.  On the Glass in Coal Fly Ashes: Recent Advances , 1987 .

[38]  D. Michel,et al.  High-resolution solid-state NMR of silicates and zeolites , 1987 .

[39]  R. Blinc,et al.  NMR studies of hydrating cement: A spin-spin relaxation study of the early hydration stage , 1988 .

[40]  A. West,et al.  High oxide ion conductivity in Ca12Al14O33 , 1988, Nature.

[41]  R. Blinc,et al.  NMR spin grouping in hydrating cement at 200 MHz , 1988 .

[42]  C. Dobson,et al.  Hydration of Tricalcium Silicate Followed by 29Si NMR with Cross‐Polarization , 1988 .

[43]  Mark E. Smith,et al.  Solid-state magnesium-25 n.m.r. spectroscopy , 1988 .

[44]  J. F. Young,et al.  Investigations of Calcium Silicate Hydrate Structure Using Silicon‐29 Nuclear Magnetic Resonance Spectroscopy , 1988 .

[45]  Menashii D. Cohen,et al.  Durability of Portland Cement-Silica Fume Pastes in Magnesium and Sodium Sulfate Solutions , 1988 .

[46]  J. Hjorth,et al.  29Si MAS NMR studies of portland cement components and effects of microsilica on the hydration reaction , 1988 .

[47]  R. Kirkpatrick,et al.  13 C MAS NMR spectroscopy of inorganic and biogenic carbonates , 1989 .

[48]  D. Bish,et al.  Rietveld Refinement of Non-Hydrogen Atomic Positions in Kaolinite , 1989 .

[49]  H. Taylor Modification of the Bogue calculation , 1989 .

[50]  R. Rassem,et al.  29Si high-resolution NMR study of tricalcium silicate hydration , 1989 .

[51]  H. Stade On the reaction of C-S-H(di, poly) with alkali hydroxides , 1989 .

[52]  R. Kirkpatrick,et al.  Hydrothermal reaction of albite and a sodium aluminosilicate glass: A solid-state NMR study , 1989 .

[53]  lNs W. PlpnNcurH 13C MAS NMR spectroscopy of inorganic and biogenic carbonates , 1989 .

[54]  N. Nielsen,et al.  Magic-angle spinning NMR spectra of satellite transitions for quadrupolar nuclei in solids , 1989 .

[55]  T. Gullion,et al.  Rotational-Echo, Double-Resonance NMR , 1989 .

[56]  A. G. Holterhoff,et al.  Calcium aluminate cements , 1990 .

[57]  E. Passaglia,et al.  Straetlingite; crystal structure, chemistry, and a reexamination of its polytype vertumnite , 1990 .

[58]  Y. Tong,et al.  CP/MAS NMR studies of the initial hydration processes of activated and ordinary beta-dicalcium silicates , 1990 .

[59]  H. J. Jakobsen,et al.  High-speed spinning versus high magnetic field in MAS NMR of quadrupolar nuclei. 27Al MAS NMR of 3CaO·Al2O3 , 1991 .

[60]  J. Davidovits Geopolymers : inorganic polymeric new materials , 1991 .

[61]  N. Nielsen,et al.  Satellite transitions in MAS NMR spectra of quadrupolar nuclei , 1991 .

[62]  A. W. Hing,et al.  Transferred-echo double-resonance NMR , 1992 .

[63]  W. S. Veeman,et al.  The detection of weak heteronuclear coupling between spin 1 and spin nuclei in MAS NMR; 14N/13C/1H triple resonance experiments , 1992 .

[64]  W. S. Veeman,et al.  The determination of the average 27Al-31P distance in aluminophosphate molecular sieves with SEDOR NMR. , 1992, Solid state nuclear magnetic resonance.

[65]  C. Dobson,et al.  Location of Aluminum in Substituted Calcium Silicate Hydrate (C‐S‐H) Gels as Determined by 29Si and 27Al NMR and EELS , 1993 .

[66]  X. Cong,et al.  17O and 29Si MAS NMR study of β–C2S hydration and the structure of calcium-silicate hydrates , 1993 .

[67]  W. S. Veeman,et al.  Spin density description of rotational-echo double-resonance, transferred-echo double-resonance and two-dimensional transferred-echo double-resonance solid state nuclear magnetic resonance. , 1993, Solid state nuclear magnetic resonance.

[68]  I. Richardson,et al.  The incorporation of minor and trace elements into calcium silicate hydrate (CSH) gel in hardened cement pastes , 1993 .

[69]  H. J. Jakobsen,et al.  Characterization of calcium aluminate phases in cements by aluminum-27 MAS NMR spectroscopy , 1993 .

[70]  K. MacKenzie,et al.  Thermal decomposition of brucite, Mg(OH)2: a 25Mg MAS NMR study , 1993 .

[71]  A. W. Hing,et al.  Measurement of heteronuclear dipolar coupling by transferred-echo double-resonance NMR , 1993 .

[72]  W. S. Veeman,et al.  Rotational echo 14N/13C/1H triple resonance solid‐state nuclear magnetic resonance: A probe of 13C–14N internuclear distances , 1993 .

[73]  Alan D. Wilson,et al.  Acid-Base Cements: Their Biomedical and Industrial Applications , 1993 .

[74]  B. Sherriff,et al.  27 Al and 25Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence , 1993 .

[75]  I. Richardson,et al.  Determining the local coordination of aluminium in cement using electron energy loss near-edge structure , 1994 .

[76]  J. Davidovits PROPERTIES OF GEOPOLYMER CEMENTS , 1994 .

[77]  L. Butler,et al.  29Si and 27Al MAS‐NMR of NaOH‐Activated Blast‐Furnace Slag , 1994 .

[78]  C. Dobson,et al.  The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase , 1994 .

[79]  C. Jäger Satellite Transition Spectroscopy of Quadrupolar Nuclei , 1994 .

[80]  I. Farnan,et al.  Bonding and dynamical phenomena in MgO: A high temperature 17O and 25Mg NMR study , 1994 .

[81]  T. Mitsuda,et al.  29Si NMR Spectroscopy of Silicate Anions in Hydrothermally Formed C‐S‐H , 1994 .

[82]  J. Rocha,et al.  27Al Satellite Transition MAS-NMR Spectroscopy of Kaolinite , 1994, Clay Minerals.

[83]  C. Hall,et al.  Direct observation of aluminium guest ions in the silicate phases of cement minerals by 27 Al MAS NMR spectroscopy , 1994 .

[84]  J. L. Caillerie,et al.  29SI NMR OBSERVATION OF AN AMORPHOUS MAGNESIUM SILICATE FORMED DURING IMPREGNATION OF SILICA WITH MG(II) IN AQUEOUS SOLUTION , 1995 .

[85]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .

[86]  H. J. Jakobsen,et al.  Quantification of thaumasite in cementitious materials by 29 Si { 1 H} cross-polarization magic-angle spinning NMR spectroscopy , 1995 .

[87]  M. Inamori,et al.  Industry , 1995, Encyclopedic Dictionary of Archaeology.

[88]  T. Gullion Measurement of dipolar interactions between spin-12 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance NMR , 1995 .

[89]  P. Colombet,et al.  29Si MAS NMR Study of Dicalcium Silicate: The Structural Influence of Sulfate and Alumina Stabilizers , 1995 .

[90]  1H — 29Si CPMAS NMR study of the structure of calcium silicate hydrate , 1995 .

[91]  M. Grutzeck,et al.  29Si and 27Al MASNMR Study of Stratlingite , 1995 .

[92]  C. Hall,et al.  Quantification of calcium silicate phases in Portland cements by 29Si MAS NMR spectroscopy , 1995 .

[93]  L. Frydman,et al.  Isotropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR , 1995 .

[94]  A. Sebald,et al.  Deconvolution of 29Si magic-angle spinning nuclear magnetic resonance spectra of silicate glasses revisited--some critical comments. , 1995, Solid state nuclear magnetic resonance.

[95]  T. Gullion Detecting13C–17O Dipolar Interactions by Rotational-Echo, Adiabatic-Passage, Double-Resonance NMR , 1995 .

[96]  A. Whittaker,et al.  Structure of calcium aluminate sulfate Ca4Al6O16S , 1995 .

[97]  L. Frydman,et al.  Multiple-Quantum Magic-Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids , 1995 .

[98]  D. Massiot,et al.  Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei. , 1996, Solid state nuclear magnetic resonance.

[99]  H. Zanni,et al.  A spectroscopic NMR investigation of the calcium silicate hydrates present in cement and concrete. , 1996, Magnetic resonance imaging.

[100]  R. Kirkpatrick,et al.  133Cs NMR study of cesium on the surfaces of kaolinite and illite , 1996 .

[101]  X. Cong,et al.  29Si MAS NMR study of the structure of calcium silicate hydrate , 1996 .

[102]  J. Jehng,et al.  Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing. , 1996, Magnetic resonance imaging.

[103]  X. Cong,et al.  17O MAS NMR Investigation of the Structure of Calcium Silicate Hydrate Gel , 1996 .

[104]  G. K. Moir,et al.  Degrees of reaction of the slag in some blends with Portland cements , 1996 .

[105]  K. Ikeda Preparation of fly ash monoliths consolidated with a sodium silicate binder at ambient temperature , 1997 .

[106]  I. Richardson,et al.  The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement/blast-furnace slag blends , 1997 .

[107]  S. Kohn,et al.  Natural abundance solid state 43Ca NMR , 1997 .

[108]  J. Stebbins,et al.  NMR evidence for excess non-bridging oxygen in an aluminosilicate glass , 1997, Nature.

[109]  R. Kirkpatrick,et al.  23Na and 133Cs NMR study of cation adsorption on mineral surfaces: Local environments, dynamics, and effects of mixed cations , 1997 .

[110]  G. Renaudin,et al.  A cementitious compound with composition 3CaO.Al2O3.CaCO3.11H2O , 1998 .

[111]  A. Nonat,et al.  Characterization of Calcium Aluminate Hydrates and Related Hydrates of Cement Pastes by (27)Al MQ-MAS NMR. , 1998, Inorganic chemistry.

[112]  P. Colombet,et al.  Nuclear magnetic resonance spectroscopy of cement-based materials , 1998 .

[113]  H. Zanni,et al.  Tricalcium Silicate Hydration at High Temperature. A 29Si and 1H NMR Investigation , 1998 .

[114]  W. Wieker,et al.  Characterization of Protons in C-S-H Phases by Means of High-Speed 1H MAS NMR Investigations , 1998 .

[115]  P. Türker,et al.  Effects of fly ash particle size on strength of Portland cement fly ash mortars , 1998 .

[116]  C. Hall,et al.  Quantitative Aspects of 27Al MAS NMR of Calcium Aluminoferrites , 1998 .

[117]  D. Bentz,et al.  1H nuclear magnetic resonance characterization of Portland cement: molecular diffusion of water studied by spin relaxation and relaxation time-weighted imaging , 1998 .

[118]  A. Chadwick,et al.  Oxygen Speciation in Nanophase MgO from Solid-State 17O NMR , 1998 .

[119]  T. Nijland,et al.  The occurrence of preiswerkite in a tourmaline-biotite-scapolite rock from Blengsvatn, Norway , 1999 .

[120]  M. François,et al.  Characterization of magnetite in silico-aluminous fly ash by SEM, TEM, XRD, magnetic susceptibility, and Mössbauer spectroscopy , 1999 .

[121]  A. Nonat,et al.  Interaction between Salts (NaCl, CsCl) and Calcium Silicate Hydrates (C−S−H) , 1999 .

[122]  F. Glasser,et al.  Alkali binding in cement pastes: Part I. The C-S-H phase , 1999 .

[123]  G. Renaudin,et al.  Order and disorder in the lamellar hydrated tetracalcium monocarboaluminate compound , 1999 .

[124]  I. Richardson The nature of C-S-H in hardened cements , 1999 .

[125]  R. Kirkpatrick,et al.  Interlayer structure, anion dynamics, and phase transitions in mixed-metal layered hydroxides: Variable temperature 35Cl NMR spectroscopy of hydrotalcite and Ca-aluminate hydrate (hydrocalumite) , 1999 .

[126]  H. Zanni,et al.  Aluminum Incorporation in Calcium Silicate Hydrates (C−S−H) Depending on Their Ca/Si Ratio , 1999 .

[127]  V. Rives,et al.  Reconstruction of layered double hydroxides from calcined precursors: a powder XRD and 27Al MAS NMR study , 1999 .

[128]  Pierre-Claude Aitcin,et al.  Cements of yesterday and today Concrete of tomorrow , 2000 .

[129]  J. Stebbins,et al.  The Structure of Aluminosilicate Glasses: High-Resolution 17O and 27Al MAS and 3QMAS NMR Study , 2000 .

[130]  E. Vance,et al.  Cs Speciation in Cements , 2000 .

[131]  K. MacKenzie,et al.  Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers , 2000 .

[132]  J. Stebbins,et al.  Al–O–Al and Si–O–Si sites in framework aluminosilicate glasses with Si/Al=1: quantification of framework disorder , 2000 .

[133]  C. Fyfe,et al.  Detection of the invisible aluminium and characterisation of the multiple , 2000 .

[134]  S. Martínez-Ramírez,et al.  Alkali-activated fly ash/slag cements: Strength behaviour and hydration products , 2000 .

[135]  M. François,et al.  Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and 29Si MAS NMR , 2000 .

[136]  L. Struble,et al.  Cement solidification of simulated off-gas condensates from vitrification of low-level nuclear waste solutions. , 2001, Waste management.

[137]  R. Kirkpatrick,et al.  35Cl NMR relaxation study of cement hydrate suspensions , 2001 .

[138]  A. Nonat,et al.  Zeta-Potential Study of Calcium Silicate Hydrates Interacting with Alkaline Cations , 2001 .

[139]  H. Panepucci,et al.  29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes , 2001 .

[140]  P. Hewlett,et al.  Lea's chemistry of cement and concrete , 2001 .

[141]  S. Gíslason,et al.  The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11 , 2001 .

[142]  J. Stebbins,et al.  Oxygen triclusters in crystalline CaAl4O7 (grossite) and in calcium aluminosilicate glasses: 17O NMR , 2001 .

[143]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[144]  J. Stebbins,et al.  Extent of intermixing among framework units in silicate glasses and melts , 2002 .

[145]  L. Pel,et al.  Combined NMR cryoporometry and relaxometry , 2002 .

[146]  T. Staněk,et al.  The influence of the alite polymorphism on the strength of the Portland cement , 2002 .

[147]  F. Glasser,et al.  Alkali sorption by C-S-H and C-A-S-H gels: Part II. Role of alumina , 2002 .

[148]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[149]  H. Taylor,et al.  The C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositions , 2003 .

[150]  J. Stebbins,et al.  Bonding preferences of non-bridging O atoms: Evidence from 17O MAS and 3QMAS NMR on calcium aluminate and low-silica Ca-aluminosilicate glasses , 2003 .

[151]  H. Panepucci,et al.  Characterization by Multinuclear High‐Resolution NMR of Hydration Products in Activated Blast‐Furnace Slag Pastes , 2003 .

[152]  A. Legrand,et al.  Solid-state 1H and 27Al NMR studies of amorphous aluminum hydroxides. , 2003, Journal of colloid and interface science.

[153]  R. Kirkpatrick,et al.  17O and 27Al MAS and 3QMAS NMR Study of Synthetic and Natural Layer Silicates , 2003 .

[154]  K. MacKenzie,et al.  Synthesis and thermal behaviour of potassium sialate geopolymers , 2003 .

[155]  H. J. Jakobsen,et al.  Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated portland cements: a high-field 27Al and 29Si MAS NMR investigation. , 2003, Inorganic chemistry.

[156]  S. Vassilev,et al.  Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 1. Characterization of feed coals and fly ashes☆ , 2003 .

[157]  F. Puertas,et al.  Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes , 2003 .

[158]  K. Scrivener,et al.  29Si and 27Al NMR study of alkali-activated slag , 2003 .

[159]  A. J. Vega,et al.  Interatomic distance measurement in solid-state NMR between a spin- 1/2 and a spin- 5/2 using a universal REAPDOR curve. , 2003, Journal of the American Chemical Society.

[160]  Á. Palomo,et al.  Characterisation of fly ashes. Potential reactivity as alkaline cements , 2003 .

[161]  F. Puertas,et al.  Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator , 2003 .

[162]  H. J. Jakobsen,et al.  Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy , 2004 .

[163]  M. Bühl,et al.  Calculation of NMR and EPR parameters : theory and applications , 2004 .

[164]  A. Nonat,et al.  Application of 29Si Homonuclear and 1H−29Si Heteronuclear NMR Correlation to Structural Studies of Calcium Silicate Hydrates , 2004 .

[165]  H. Taylor,et al.  Solubility and structure of calcium silicate hydrate , 2004 .

[166]  Á. Palomo,et al.  Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products , 2004 .

[167]  J. F. Young,et al.  Direct synthesis and hydration of calcium aluminosulfate (Ca4Al6O16S) , 2004 .

[168]  I. Richardson Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume , 2004 .

[169]  A. Vezzoli,et al.  1H NMR spin-spin relaxation and imaging in porous systems: an application to the morphological study of white portland cement during hydration in the presence of organics. , 2004, Magnetic resonance imaging.

[170]  A. Nonat THE STRUCTURE AND STOICHIOMETRY OF C-S-H , 2004 .

[171]  C. Hansson,et al.  Monitoring of Hydration of White Cement Paste with Proton NMR Spin–Spin Relaxation , 2004 .

[172]  J. Deventer,et al.  Statistical Thermodynamic Model for Si/Al Ordering in Amorphous Aluminosilicates , 2005 .

[173]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[174]  T. Nenoff,et al.  Thermochemistry of Hydrotalcite-like Phases Intercalated with CO32-, NO3-, Cl-, I-, and ReO4- , 2005 .

[175]  J. Mitchell,et al.  Surface relaxation and chemical exchange in hydrating cement pastes: a two-dimensional NMR relaxation study. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[176]  K. Okada,et al.  Formation of Layered Magnesium Silicate during the Aging of Magnesium Hydroxide–Silica Mixtures , 2005 .

[177]  G. Glasser,et al.  Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems , 2005 .

[178]  J. Provis,et al.  29Si NMR study of structural ordering in aluminosilicate geopolymer gels. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[179]  L. Kopecký,et al.  Geopolymer materials based on fly ash , 2005 .

[180]  F. Mauri,et al.  First-principles calculation of 17O and 25Mg NMR shieldings in MgO at finite temperature: rovibrational effect in solids. , 2005, The journal of physical chemistry. B.

[181]  P. Duxson,et al.  Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels , 2005 .

[182]  F. Glasser,et al.  Synthesis and characterisation of magnesium silicate hydrate gels , 2005 .

[183]  N. Lequeux,et al.  Microstructure evolution of hydrated cement pastes. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[184]  J. Deventer,et al.  Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results , 2005 .

[185]  K. Shimoda,et al.  Local Environments of Slags: The First Application of 43Ca 3QMAS NMR Technique , 2005 .

[186]  P. Duxson The structure and thermal evolution of metakaolin geopolymers , 2006 .

[187]  J. Stebbins,et al.  Disorder and the extent of polymerization in calcium silicate and aluminosilicate glasses: O-17 NMR results and quantum chemical molecular orbital calculations , 2006 .

[188]  N. Scarlett,et al.  Quantification of phases with partial or no known crystal structures , 2006, Powder Diffraction.

[189]  J. F. Young,et al.  The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples , 2006 .

[190]  H. J. Jakobsen,et al.  A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy , 2006 .

[191]  J. Deventer,et al.  39K NMR of Free Potassium in Geopolymers , 2006 .

[192]  M. Wilhelm,et al.  Solid state NMR investigations on the role of organic admixtures on the hydration of cement pastes , 2006 .

[193]  N. Collier,et al.  The disposal of radioactive ferric floc. , 2006, Waste management.

[194]  B. Lothenbach,et al.  Thermodynamic modelling of the hydration of Portland cement , 2006 .

[195]  Magnetic Resonance In Situ Study of Tricalcium Aluminate Hydration in the Presence of Gypsum , 2006 .

[196]  H. Hilbig,et al.  Quantitative 29Si MAS NMR spectroscopy of cement and silica fume containing paramagnetic impurities , 2006 .

[197]  B. Lothenbach,et al.  A thermodynamic approach to the hydration of sulphate-resisting Portland cement. , 2006, Waste management.

[198]  F. Goetz-Neunhoeffer,et al.  Refined ettringite (Ca6Al2(SO4)3(OH)12∙26H2O) structure for quantitative X-ray diffraction analysis , 2006, Powder Diffraction.

[199]  Á. Palomo,et al.  The role played by the reactive alumina content in the alkaline activation of fly ashes , 2006 .

[200]  R. Cloots,et al.  (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement , 2006 .

[201]  Qiu Ji-jun,et al.  Effect of annealing on structural, optical and electrical properties of CdS thin films grown by ILGAR , 2006 .

[202]  Li Yongxin,et al.  The reaction mechanism between MgO and microsilica at room temperature , 2006 .

[203]  J. Mitchell,et al.  Observation of exchange of micropore water in cement pastes by two-dimensional T(2)-T(2) nuclear magnetic resonance relaxometry. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[204]  K. Shimoda,et al.  First evidence of multiple Ca sites in amorphous slag structure: multiple-quantum MAS NMR spectroscopy on calcium-43 at high magnetic field. , 2006, Solid state nuclear magnetic resonance.

[205]  Y. J. Lee,et al.  Observation of bicarbonate in calcite by NMR spectroscopy , 2006 .

[206]  H. Zanni,et al.  Applicability of natural abundance 33S solid-state NMR to cement chemistry , 2006 .

[207]  G. Saoût,et al.  Chemical structure of cement aged at normal and elevated temperatures and pressures Part I. Class G oilwell cement , 2006 .

[208]  WerrBn LonwnNsrBrN,et al.  THE DISTRIBUTION OF ALUMINUM IN THE TETRAHEDRA OF SILICATES AND ALUMINATES , 2007 .

[209]  A. Barron,et al.  Solid-State 29Si NMR Analysis of Cements: Comparing Different Methods of Relaxation Analysis for Determining Spin−Lattice Relaxation Times to Enable Determination of the C3S/C2S Ratio , 2007 .

[210]  K. Shimoda,et al.  Ultra-high Magnetic Field (21.8 T) Solid-state Nuclear Magnetic Resonance for Inorganic Materials , 2007 .

[211]  I. Sobrados,et al.  Solid-state 27Al and 29Si NMR investigations on Si-substituted hydrogarnets , 2007 .

[212]  C. Hansson,et al.  Proton Spin–Spin Relaxation Study of the Effect of Temperature on White Cement Hydration , 2007 .

[213]  E. Vance,et al.  Transmission Electron Microscopy and Nuclear Magnetic Resonance Studies of Geopolymers for Radioactive Waste Immobilization , 2007 .

[214]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[215]  I. Richardson,et al.  Composition and structure of C–S–H in white Portland cement–20% metakaolin pastes hydrated at 25 °C , 2007 .

[216]  K. Shimoda,et al.  Detailed structure elucidation of the blast furnace slag by molecular dynamics simulation , 2007 .

[217]  M. Rowles,et al.  29Si, 27Al, 1H and 23Na MAS NMR Study of the Bonding Character in Aluminosilicate Inorganic Polymers , 2007 .

[218]  J. Provis,et al.  Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[219]  M. Weil,et al.  The influence of calcium content on the structure and thermal performance of fly ash based geopolymers , 2007 .

[220]  J. Deventer,et al.  The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers , 2007 .

[221]  Mark E. Smith,et al.  A multinuclear MAS NMR study of calcium-containing aluminosilicate inorganic polymers , 2007 .

[222]  J. A. Chudek,et al.  (31)P solid-state MAS-NMR spectroscopy of the compounds that form in phosphate-bonded dental casting investment materials during setting. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[223]  M. Mulheron,et al.  Two-dimensional correlation relaxometry studies of cement pastes performed using a new one-sided NMR magnet , 2007 .

[224]  I. Richardson,et al.  A Combined 29Si MAS NMR and Selective Dissolution Technique for the Quantitative Evaluation of Hydrated Blast Furnace Slag Cement Blends , 2007 .

[225]  N. Koukouzas,et al.  Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal, wood chips and their blends , 2007 .

[226]  J. Brus,et al.  Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers , 2007 .

[227]  H. Zanni,et al.  Calcium silicate hydrates investigated by solid‐state high resolution 1H and 29Si nuclear magnetic resonance , 2007 .

[228]  J. Deventer,et al.  Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry , 2007 .

[229]  C. Kaps,et al.  Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition , 2007 .

[230]  B. Lothenbach,et al.  The AFm phase in Portland cement , 2007 .

[231]  B. Lothenbach,et al.  Hydration of alkali-activated slag: thermodynamic modelling , 2007 .

[232]  Á. Palomo,et al.  Alkaline activation of metakaolin–fly ash mixtures: Obtain of Zeoceramics and Zeocements , 2008 .

[233]  A. D. de Dios,et al.  Ab initio calculations of NMR chemical shifts. , 2008, The Journal of chemical physics.

[234]  D. Massiot,et al.  MAS NMR spectra of quadrupolar nuclei in disordered solids: the Czjzek model. , 2008, Journal of magnetic resonance.

[235]  Á. Palomo,et al.  Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey , 2008 .

[236]  I. Sobrados,et al.  Solid-state 27Al and 29Si NMR characterization of hydrates formed in calcium aluminate–silica fume mixtures , 2008 .

[237]  G. Saoût,et al.  Influence of limestone on the hydration of Portland cements , 2008 .

[238]  M. Hansen,et al.  Sensitivity enhancement in natural-abundance solid-state 33S MAS NMR spectroscopy employing adiabatic inversion pulses to the satellite transitions. , 2008, Journal of magnetic resonance.

[239]  T. Armbruster,et al.  Struvite-(K), KMgPO4·6H2O, the potassium equivalent of struvite : a new mineral , 2008 .

[240]  M. Epple,et al.  On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy. , 2008, Inorganic chemistry.

[241]  I. Richardson The calcium silicate hydrates , 2008 .

[242]  B. Lothenbach,et al.  Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement , 2008 .

[243]  J. Provis,et al.  Designing Precursors for Geopolymer Cements , 2008 .

[244]  K. Shimoda,et al.  Total understanding of the local structures of an amorphous slag: Perspective from multi-nuclear (29Si, 27Al, 17O, 25Mg, and 43Ca) solid-state NMR , 2008 .

[245]  C. Hall,et al.  Characterization of Cement Minerals, Cements and Their Reaction Products at the Atomic and Nano Scale , 2008 .

[246]  N. Collier,et al.  Immobilisation of Fe floc: Part 2, encapsulation of floc in composite cement , 2009 .

[247]  D. Damidot,et al.  Effect of curing conditions on oilwell cement paste behaviour during leaching: Experimental and modelling approaches , 2009 .

[248]  M. E. Smith,et al.  QuadFit--a new cross-platform computer program for simulation of NMR line shapes from solids with distributions of interaction parameters. , 2009, Solid state nuclear magnetic resonance.

[249]  K. Scrivener,et al.  Improved quantification of alite and belite in anhydrous Portland cements by (29)Si MAS NMR: effects of paramagnetic ions. , 2009, Solid state nuclear magnetic resonance.

[250]  H. Manzano,et al.  Aluminum incorporation to dreierketten silicate chains. , 2009, The journal of physical chemistry. B.

[251]  J. Russias,et al.  Structural characterization of C–S–H and C–A–S–H samples—Part II: Local environment investigated by spectroscopic analyses , 2009 .

[252]  Z. Tong,et al.  Preparation of geopolymer precursors by sol–gel method and their characterization , 2009 .

[253]  J. Provis,et al.  Generalized biaxial shearing of MQMAS NMR spectra. , 2009, Journal of magnetic resonance.

[254]  A. Neville History of high-alumina cement. Part 1: Problems and the Stone report , 2009 .

[255]  S. Ashbrook Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei. , 2009, Physical chemistry chemical physics : PCCP.

[256]  Tae-Joon Park,et al.  27 Al Solid-state NMR Structural Studies of Hydrotalcite Compounds Calcined at Different Temperatures , 2009 .

[257]  Thuan T. Tran,et al.  Site preferences of fluoride guest ions in the calcium silicate phases of Portland cement from 29Si{19F} CP-REDOR NMR spectroscopy. , 2009, Journal of the American Chemical Society.

[258]  I. Hung,et al.  Q-shear transformation for MQMAS and STMAS NMR spectra. , 2009, Journal of magnetic resonance.

[259]  A. Nonat,et al.  Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions , 2009 .

[260]  J. Deventer,et al.  Geopolymers : structure, processing, properties and industrial applications , 2009 .

[261]  R. Maxwell,et al.  Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy , 2009, Geochemical transactions.

[262]  R. Kirkpatrick,et al.  Natural Abundance 43Ca NMR Spectroscopy of Tobermorite and Jennite: Model Compounds for CSH , 2009 .

[263]  I. Richardson,et al.  Composition and Microstructure of 20-year-old Ordinary Portland Cement-ground Granulated Blast-furnace Slag Blends Containing 0 to 100% Slag , 2010 .

[264]  J. Provis,et al.  Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. , 2010, Physical chemistry chemical physics : PCCP.

[265]  P. McDonald,et al.  On the interpretation of 1H 2-dimensional NMR relaxation exchange spectra in cements: Is there exchange between pores with two characteristic sizes or Fe3+ concentrations? , 2010 .

[266]  J. Deventer,et al.  The Effects of Temperature on the Local Structure of Metakaolin‐Based Geopolymer Binder: A Neutron Pair Distribution Function Investigation , 2010 .

[267]  Longtu Li,et al.  A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements , 2010 .

[268]  D. L. Bryce Calcium binding environments probed by (43)Ca NMR spectroscopy. , 2010, Dalton transactions.

[269]  L. Black,et al.  Current themes in cement research , 2010 .

[270]  E. Allouche,et al.  Factors affecting the suitability of fly ash as source material for geopolymers , 2010 .

[271]  J. Beaudoin,et al.  Natural abundance high field (43)Ca solid state NMR in cement science. , 2010, Physical chemistry chemical physics : PCCP.

[272]  Á. Palomo,et al.  Effect of Calcium Additions on N-A-S-H Cementitious Gels , 2010 .

[273]  K. MacKenzie,et al.  Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals , 2010 .

[274]  B. Lothenbach,et al.  Hydration of calcium sulfoaluminate cements — Experimental findings and thermodynamic modelling , 2010 .

[275]  L. Roberts,et al.  Molecular silicate and aluminate species in anhydrous and hydrated cements. , 2010, Journal of the American Chemical Society.

[276]  I. Richardson,et al.  Composition, morphology and nanostructure of C-S-H in 70% white Portland cement-30% fly ash blends hydrated at 55 °C. , 2010 .

[277]  X. Cui,et al.  Characterization of chemosynthetic Al2O3–2SiO2 geopolymers , 2010 .

[278]  D. Fowler,et al.  Comprehensive Phase Characterization of Crystalline and Amorphous Phases of a Class F Fly Ash , 2010 .

[279]  J. Deventer,et al.  Effect of Alumina Release Rate on the Mechanism of Geopolymer Gel Formation , 2010 .

[280]  W. Gessner,et al.  Festkörper‐NMR‐Untersuchungen am Gehlenithydrat 2CaO · Al2O3 · SiO2 · 8H2O , 2010 .

[281]  J. Provis,et al.  Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation. , 2010, The journal of physical chemistry. A.

[282]  H. J. Jakobsen,et al.  Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy. , 2010, Inorganic chemistry.

[283]  V. Rose,et al.  Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags , 2010 .

[284]  A. Vyalikh,et al.  Hydrogen bonds and local symmetry in the crystal structure of gibbsite , 2010, Magnetic resonance in chemistry : MRC.

[285]  I. Richardson,et al.  Characterisation of cement hydrate phases by TEM, NMR and Raman spectroscopy , 2010 .

[286]  D. Macphee,et al.  Effect on Fresh C-S-H gels of the Simultaneous Addition of Alkali and Aluminium , 2010 .

[287]  E. Hahn,et al.  Spin Echoes , 2011 .

[288]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[289]  Á. Palomo,et al.  Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O , 2011 .

[290]  H. Manzano,et al.  A model for the C-A-S-H gel formed in alkali-activated slag cements , 2011 .

[291]  C. Cheeseman,et al.  Development of low pH cement systems forming magnesium silicate hydrate (M-S-H) , 2011 .

[292]  J. Deventer,et al.  Evolution of Local Structure in Geopolymer Gels: An In Situ Neutron Pair Distribution Function Analysis , 2011 .

[293]  Erich D. Rodríguez,et al.  Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends , 2011, Journal of Materials Science.

[294]  G. Saoût,et al.  Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO , 2011 .

[295]  J. Deventer,et al.  The effect of silica availability on the mechanism of geopolymerisation , 2011 .

[296]  Jiangxiong Wei,et al.  Reaction products of MgO and microsilica cementitious materials at different temperatures , 2011 .

[297]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[298]  G. Saoût,et al.  Hydration Degree of Alkali-Activated Slags: A 29Si NMR Study , 2011 .

[299]  A. Nonat,et al.  C-S-H/solution interface: Experimental and Monte Carlo studies , 2011 .

[300]  Yu Li,et al.  Mechanism of phase separation in BFS (blast furnace slag) glass phase , 2011 .

[301]  D. Kulik Improving the structural consistency of C-S-H solid solution thermodynamic models , 2011 .

[302]  G. Saoût,et al.  Iron in carbonate containing AFm phases , 2011 .

[303]  J. Zwanziger,et al.  A 43Ca and 13C NMR study of the chemical interaction between poly(ethylene-vinyl acetate) and white cement during hydration. , 2011, Solid state nuclear magnetic resonance.

[304]  V. Rose,et al.  Evolution of binder structure in sodium silicate-activated slag-metakaolin blends , 2011 .

[305]  J. Brus,et al.  Insights into the Structural Transformations of Aluminosilicate Inorganic Polymers: A Comprehensive Solid-State NMR Study , 2012 .

[306]  Thuan T. Tran,et al.  Characterization of the Network Structure of Alkali-Activated Aluminosilicate Binders by Single- and Double-Resonance 29si {27al} Mas Nmr Experiments , 2012 .

[307]  Á. Palomo,et al.  Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates , 2012 .

[308]  J. Génin,et al.  Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides , 2012, Mineralogical Magazine.

[309]  C. Gervais,et al.  25Mg Solid-State NMR of Magnesium Phosphates: High Magnetic Field Experiments and Density Functional Theory Calculations , 2012 .

[310]  K. Scrivener,et al.  Alkali fixation of C-S-H in blended cement pastes and its relation to alkali silica reaction , 2012 .

[311]  B. Lothenbach,et al.  Stability of Monosulfate in the Presence of Iron , 2012 .

[312]  C. Grey,et al.  Identification of Cation Clustering in Mg–Al Layered Double Hydroxides Using Multinuclear Solid State Nuclear Magnetic Resonance Spectroscopy , 2012 .

[313]  C. Cheeseman,et al.  Magnesium-silicate-hydrate cements for encapsulating problematic aluminium containing wastes , 2012 .

[314]  J. Greet,et al.  Trends in global CO2 emissions: 2012 report , 2012 .

[315]  A. Nonat,et al.  27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate. , 2012, Inorganic chemistry.

[316]  Thuan T. Tran,et al.  Double cross-polarization MAS NMR in the assignment of abundant-spin resonances: ¹⁹F-{²⁹Si}-¹⁹F FBCP/MAS NMR of fluoride ions incorporated in calcium silicate hydrate (C-S-H) phases. , 2012, Journal of magnetic resonance.

[317]  Mark E. Smith,et al.  Magnesium analogues of aluminosilicate inorganic polymers (geopolymers) from magnesium minerals , 2013, Journal of Materials Science.

[318]  A. Ayuela,et al.  29Si NMR in Cement: A Theoretical Study on Calcium Silicate Hydrates , 2012 .

[319]  F. Frizon,et al.  Retention of alkali ions by hydrated low-pH cements: Mechanism and Na+/K+ selectivity , 2013 .

[320]  S. Bernal,et al.  Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[321]  M. Juenger,et al.  Assessment of the Glassy Phase Reactivity in Fly Ashes Used for Geopolymer Cements , 2013 .

[322]  A. Ayuela,et al.  29Si Chemical Shift Anisotropies in Hydrated Calcium Silicates: A Computational Study , 2013 .

[323]  K. Scrivener,et al.  Densification of C–S–H Measured by 1H NMR Relaxometry , 2013 .

[324]  Thuan T. Tran,et al.  Studies of guest-ion incorporation in Portland cement - Part 2 , 2013 .

[325]  A. Mullera,et al.  Use of Bench-top Nmr to Measure the Density, Composition and Desorption Isotherm of C-s-h in Cement Paste , 2013 .

[326]  Adam R. Kilcullen,et al.  Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated , 2013 .

[327]  I. Richardson Clarification of possible ordered distributions of trivalent cations in layered double hydroxides and an explanation for the observed variation in the lower solid-solution limit , 2013, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[328]  G. Saoût,et al.  Hydration of Portland cement with additions of calcium sulfoaluminates , 2013 .

[329]  Richard R. Taylor,et al.  Material and Elastic Properties of Al-Tobermorite in Ancient Roman Seawater Concrete , 2013 .

[330]  J. Skibsted,et al.  The Effect of Alkali Ions on the Incorporation of Aluminum in the Calcium Silicate Hydrate (C–S–H) Phase Resulting from Portland Cement Hydration Studied by 29Si MAS NMR , 2013 .

[331]  D. Fowler,et al.  An examination of the reactivity of fly ash in cementitious pore solutions , 2013 .

[332]  E. Śnieżek,et al.  Influence of time and temperature on ageing and phases synthesis in the MgO–SiO2–H2O system , 2013 .

[333]  D. Herfort,et al.  {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions , 2013 .

[334]  C. Qian,et al.  29Si NMR Characterization of Silica Tetrahedron in the Silica Fume Simulate Hydration , 2013 .

[335]  Thuan T. Tran,et al.  Aluminum Incorporation in the C–S–H Phase of White Portland Cement–Metakaolin Blends Studied by 27Al and 29Si MAS NMR Spectroscopy , 2014 .

[336]  J. Deventer,et al.  Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash , 2014 .

[337]  R. Snellings,et al.  The Effect of Mg on Slag Reactivity in Blended Cements , 2014 .

[338]  S. Bernal,et al.  Geopolymers and Related Alkali-Activated Materials , 2014 .

[339]  C. Grey,et al.  Investigating Local Structure in Layered Double Hydroxides with 17O NMR Spectroscopy , 2014 .

[340]  I. Richardson Model structures for C-(A)-S-H(I) , 2014, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[341]  Thuan T. Tran,et al.  Fluoride ions as structural probe-ions in 19F MAS NMR studies of cement materials and thermally activated SCMs , 2014 .

[342]  Luís Pegado,et al.  Mechanism of aluminium incorporation into C–S–H from ab initio calculations , 2014 .

[343]  J. Deventer,et al.  MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders , 2014 .

[344]  B. Lothenbach,et al.  Fe-containing phases in hydrated cements , 2014 .

[345]  E. L'Hôpital Aluminium and alkali uptake in calcium silicate hydrates (C-S-H) , 2014 .

[346]  J. Brus,et al.  Biaxial Q-shearing of 27Al 3QMAS NMR spectra: insight into the structural disorder of framework aluminosilicates. , 2014, Solid state nuclear magnetic resonance.

[347]  C. Cheeseman,et al.  Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate , 2014 .

[348]  J. Oh,et al.  Characterization of geopolymers from compositionally and physically different Class F fly ashes , 2014 .

[349]  Manfred Martin,et al.  Oxygen Diffusion in Mayenite , 2015 .

[350]  J. Provis,et al.  Structure and properties of binder gels formed in the system Mg(OH)2-SiO2-H2O for immobilisation of Magnox sludge. , 2015, Dalton transactions.

[351]  B. Lothenbach,et al.  Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions , 2015 .

[352]  M. Zając,et al.  CSA raw mix design: effect on clinker formation and reactivity , 2015 .

[353]  B. Lothenbach,et al.  Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg–Si phyllosilicates , 2015 .

[354]  L. Daemen,et al.  Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements , 2015 .

[355]  D. Gastaldi,et al.  Friedel's salt formation in sulfoaluminate cements: A combined XRD and 27Al MAS NMR study , 2015 .

[356]  C. Dunant,et al.  A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste , 2015 .

[357]  A. Nonat,et al.  Calcium silicate hydrates: Solid and liquid phase composition , 2015 .

[358]  G. Saoût,et al.  Incorporation of aluminium in calcium-silicate-hydrates , 2015 .

[359]  S. Bernal,et al.  Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders , 2015 .

[360]  C. Dunant,et al.  Fly ash as an assemblage of model Ca–Mg–Na-aluminosilicate glasses , 2015 .

[361]  J. Skibsted,et al.  Carbonation of C–S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy , 2015 .

[362]  K. Scrivener,et al.  Influence of silica fume on the microstructure of cement pastes: New insights from 1H NMR relaxometry , 2015 .

[363]  J. Deventer,et al.  Stoichiometrically controlled C–(A)–S–H/N–A–S–H gel blends via alkali-activation of synthetic precursors , 2015 .

[364]  B. Lothenbach,et al.  Composition-solubility-structure relationships in calcium (alkali) aluminosilicate hydrate (C-(N,K-)A-S-H). , 2015, Dalton transactions.

[365]  D. Tunega,et al.  Structural and spectroscopic characterization of ettringite mineral -combined DFT and experimental study , 2015 .

[366]  N. Hyatt,et al.  Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag , 2015 .

[367]  J. Deventer,et al.  The Role of Al in Cross‐Linking of Alkali‐Activated Slag Cements , 2015 .

[368]  R. Snellings,et al.  TC 238-SCM: hydration and microstructure of concrete with SCMs , 2015 .

[369]  A. Poulesquen,et al.  The Porous Network and its Interface inside Geopolymers as a Function of Alkali Cation and Aging , 2015 .

[370]  B. Lothenbach,et al.  Thermodynamic modelling of alkali-activated slag cements , 2015 .

[371]  B. Lothenbach,et al.  Magnesium and calcium silicate hydrates , 2015 .

[372]  S. Bernal,et al.  Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders , 2015 .

[373]  J. Provis,et al.  Advances in understanding alkali-activated materials , 2015 .

[374]  J. Deventer,et al.  Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors , 2016 .

[375]  C. Oda,et al.  Calcium silicate hydrate (C-S-H) gel solubility data and a discrete solid phase model at 25 °C based on two binary non-ideal solid solutions , 2016 .

[376]  R. Flatt,et al.  Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates , 2016, Nature Communications.

[377]  B. Lothenbach,et al.  Properties of magnesium silicate hydrates (M-S-H) , 2016 .

[378]  J. Brus,et al.  Advances in 27Al MAS NMR Studies of Geopolymers , 2016 .

[379]  J. Provis,et al.  Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders. , 2016, Dalton transactions.

[380]  B. Lothenbach,et al.  Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate , 2016 .

[381]  B. Lothenbach,et al.  Phase equilibria in the system Ca 4 Al 6 O 12 SO 4 – Ca 2 SiO 4 – CaSO 4 – H 2 O referring to the hydration of calcium sulfoaluminate cements , 2016 .

[382]  Xinyuan Ke,et al.  Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides , 2016 .

[383]  P. Baglioni,et al.  Structural characterization of magnesium silicate hydrate: towards the design of eco-sustainable cements. , 2016, Dalton transactions.

[384]  S. Gaboreau,et al.  Structure of nanocrystalline calcium silicate hydrates: insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance , 2016, Journal of applied crystallography.

[385]  M. Marchi,et al.  Hydration of calcium sulphoaluminate clinker with additions of different calcium sulphate sources , 2016 .

[386]  J. Provis,et al.  Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? , 2016, Chemical reviews.

[387]  E. Gartner,et al.  A 1H NMR relaxometry investigation of gel-pore drying shrinkage in cement pastes , 2016 .

[388]  S. Sen,et al.  Detection of “free” oxide ions in low-silica Ca/Mg silicate glasses: Results from 17O → 29Si HETCOR NMR , 2016 .

[389]  B. Lothenbach,et al.  Alkali uptake in calcium alumina silicate hydrate (C-A-S-H) , 2016 .

[390]  M. Zając,et al.  Phase assemblage of composite cements , 2017 .

[391]  Xinyuan Ke,et al.  Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement , 2017 .

[392]  Christopher B. Stabler,et al.  Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements , 2017 .

[393]  K. Scrivener,et al.  A reassessment of mercury intrusion porosimetry by comparison with 1H NMR relaxometry , 2017 .

[394]  A. Diaz,et al.  Chemistry and mass density of aluminum hydroxide gel in eco-cements by ptychographic X-ray computed tomography , 2017 .

[395]  J. Skibsted,et al.  Resolution of the Two Aluminum Sites in Ettringite by 27Al MAS and MQMAS NMR at Very High Magnetic Field (22.3 T) , 2017 .

[396]  K. Scrivener,et al.  Optimization of SEM-EDS to determine the C-A-S-H composition in matured cement paste samples , 2017 .

[397]  Abhishek Kumar,et al.  The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate , 2017 .

[398]  D. Rentsch,et al.  Formation of magnesium silicate hydrates (M-S-H) , 2017 .

[399]  Ryan J. McCarty,et al.  Constraints on aluminum and scandium substitution mechanisms in forsterite, periclase, and larnite: High-resolution NMR , 2017 .

[400]  V. Barone,et al.  Models of Aged Magnesium–Silicate–Hydrate Cements Based on the Lizardite and Talc Crystals: A Periodic DFT-GIPAW Investigation , 2017 .

[401]  M. N. Bannerman,et al.  Stability of ternesite and the production at scale of ternesite-based clinkers , 2017 .

[402]  I. Richardson,et al.  Composition and structure of an 18-year-old 5M KOH-activated ground granulated blast-furnace slag paste , 2018 .

[403]  J. Deventer,et al.  New Structural Model of Hydrous Sodium Aluminosilicate Gels and the Role of Charge-Balancing Extra-Framework Al , 2018 .

[404]  A. Kashani,et al.  Examination of alkali-activated material nanostructure during thermal treatment , 2018, Journal of Materials Science.

[405]  K. Scrivener,et al.  Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry , 2018, Cement and Concrete Research.

[406]  C. Jäger,et al.  29Si{27Al}, 27Al{29Si} and 27Al{1H} double-resonance NMR spectroscopy study of cementitious sodium aluminosilicate gels (geopolymers) and gel-zeolite composites , 2018 .

[407]  J. Ideker,et al.  Calcium Aluminate Cements , 2019, Lea's Chemistry of Cement and Concrete.

[408]  M. Juenger,et al.  Extending supplementary cementitious material resources: Reclaimed and remediated fly ash and natural pozzolans , 2017, Cement and Concrete Composites.