General Dual-Feasible Functions

Classical dual-feasible functions are defined only for nonnegative arguments thus limiting their applicability. In this chapter, we explore the extension of dual-feasible functions to more general domains with a focus on real numbers. Other attempts of generalizing the concept of dual-feasible function will be done later in the book. In Chap. 4, we will discuss for instance an extension to multidimensional domains yielding the so-called vector packing dual-feasible functions, whichmay be used to compute bounds for vector packing problems.

[1]  Cláudio Alves,et al.  A survey of dual-feasible and superadditive functions , 2010, Ann. Oper. Res..

[2]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[3]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[4]  El-Ghazali Talbi,et al.  New lower bounds for bin packing problems with conflicts , 2010, Eur. J. Oper. Res..

[5]  Allan Borodin,et al.  On the Number of Additions to Compute Specific Polynomials , 1976, SIAM J. Comput..

[6]  Cláudio Alves,et al.  Multidimensional dual-feasible functions and fast lower bounds for the vector packing problem , 2014, Eur. J. Oper. Res..

[7]  W. R. Pulleyblank,et al.  Polyhedral Combinatorics , 1989, ISMP.

[8]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[9]  Cláudio Alves,et al.  Cutting and packing : problems, models and exact algorithms , 2005 .

[10]  Cláudio Alves,et al.  Computing Valid Inequalities for General Integer Programs using an Extension of Maximal Dual Feasible Functions to Negative Arguments , 2012, ICORES.

[11]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[12]  Cláudio Alves,et al.  On the Properties of General Dual-Feasible Functions , 2014, ICCSA.

[13]  José M. Valério de Carvalho,et al.  Exact solution of bin-packing problems using column generation and branch-and-bound , 1999, Ann. Oper. Res..

[14]  Claude-Alain Burdet,et al.  A Subadditive Approach to Solve Linear Integer Programs , 1977 .

[15]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[16]  Jacques Carlier,et al.  New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation , 2007, Comput. Oper. Res..

[17]  Sándor P. Fekete,et al.  New classes of fast lower bounds for bin packing problems , 2001, Math. Program..

[18]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[19]  Cláudio Alves,et al.  Theoretical investigations on maximal dual feasible functions , 2010, Oper. Res. Lett..

[20]  Frits C. R. Spieksma,et al.  A branch-and-bound algorithm for the two-dimensional vector packing problem , 1994, Comput. Oper. Res..

[21]  Sándor P. Fekete,et al.  A General Framework for Bounds for Higher-Dimensional Orthogonal Packing Problems , 2004, Math. Methods Oper. Res..

[22]  José M. Valério de Carvalho A Note on Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problems , 2002, Comput. Optim. Appl..

[23]  Volker Kaibel,et al.  Integer Programming and Combinatorial Optimization, 11th International IPCO Conference, Berlin, Germany, June 8-10, 2005, Proceedings , 2005, IPCO.

[24]  Pamela H. Vance,et al.  Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem , 1998, Comput. Optim. Appl..

[25]  François Clautiaux New collaborative approaches for bin-packing problems , 2010 .

[26]  Sanjeeb Dash,et al.  Valid inequalities based on simple mixed-integer sets , 2006, Math. Program..

[27]  George S. Lueker,et al.  Bin packing with items uniformly distributed over intervals [a,b] , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[28]  Andrea Lodi,et al.  Strengthening Chvátal-Gomory cuts and Gomory fractional cuts , 2002, Oper. Res. Lett..

[29]  Marco A. Boschetti,et al.  The two-dimensional finite bin packing problem. Part I: New lower bounds for the oriented case , 2003, 4OR.

[30]  J. M. Valério de Carvalho,et al.  On the extremality of maximal dual feasible functions , 2012, Oper. Res. Lett..

[31]  Antoine Jouglet,et al.  A new lower bound for the non-oriented two-dimensional bin-packing problem , 2007, Oper. Res. Lett..

[32]  Cláudio Alves,et al.  Constructing general dual-feasible functions , 2015, Oper. Res. Lett..

[33]  François Vanderbeck,et al.  Exact Algorithm for Minimising the Number of Setups in the One-Dimensional Cutting Stock Problem , 2000, Oper. Res..

[34]  Alberto Caprara,et al.  Bidimensional Packing by Bilinear Programming , 2005, IPCO.

[35]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[36]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[37]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[38]  Jacques Carlier,et al.  Computing redundant resources for the resource constrained project scheduling problem , 2007, Eur. J. Oper. Res..

[39]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .