Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads.

Theoretical prediction of surface bone remodeling in the diaphysis of the long bone under various external loads are made within the framework of adaptive elastic theory. These loads include external lateral pressure, electric and thermal loads. Two solutions are presented for analyzing thermoelectroelastic problems of surface bone remodeling. The analytical solution that gives explicit formulation is capable of modeling homogeneous bone materials, while the semi-analytical solution is suitable for analyzing inhomogeneous cases. Numerical results are presented to verify the proposed formulation and to show the effects of mechanical, thermal and electric loads on surface bone remodeling process.

[1]  Taiji Adachi,et al.  Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling. , 2005, Medical engineering & physics.

[2]  M. Robiony,et al.  Piezoelectric bone cutting in multipiece maxillary osteotomies. , 2004, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[3]  R. D. Mindlin Equations of high frequency vibrations of thermopiezoelectric crystal plates , 1974 .

[4]  Jianqiao Ye,et al.  Laminated composite plates and shells , 2003 .

[5]  A. M. Abd-Alla,et al.  Analytical solution of electro-mechanical wave propagation in long bones , 2001, Appl. Math. Comput..

[6]  P Gizdulich,et al.  Statistical characterization of piezoelectric coefficient d23 in cow bone. , 1999, Journal of biomechanics.

[7]  W S Williams,et al.  ANALYSIS OF STRESS DISTRIBUTION AND PIEZOELECTRIC RESPONSE IN CANTILEVER BENDING OF BONE AND TENDON * , 1974, Annals of the New York Academy of Sciences.

[8]  A. Sombra,et al.  Collagen–hydroxyapatite films: piezoelectric properties , 2001 .

[9]  N Güzelsu,et al.  A piezoelectric model for dry bone tissue. , 1978, Journal of biomechanics.

[10]  A. Gjelsvik,et al.  Bone remodeling and piezoelectricity. I. , 1973, Journal of biomechanics.

[11]  D. Fotiadis,et al.  Wave propagation in human long bones of arbitrary cross-section , 2000 .

[12]  F. Mango,et al.  Converse piezoelectric effect detected in fresh cow femur bone. , 1996, Journal of biomechanics.

[13]  S. M. Ahmed,et al.  Electromechanical wave propagation in a cylindrical poroelastic bone with cavity , 2002, Appl. Math. Comput..

[14]  Jianqiao Ye,et al.  Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads , 2004 .

[15]  M. W. Johnson,et al.  Ceramic models for piezoelectricity in dry bone. , 1980, Journal of biomechanics.

[16]  H. Demiray Electro-mechanical remodelling of bones , 1983 .

[17]  Eiichi Fukada,et al.  Piezoelectric Effects in Collagen , 1964 .

[18]  M. Kryszewski Fifty Years of Study of the Piezoelectric Properties of Macromolecular Structured Biological Materials , 2004 .

[19]  Eiichi Fukada,et al.  On the Piezoelectric Effect of Bone , 1957 .

[20]  W C Van Buskirk,et al.  Surface bone remodeling induced by a medullary pin. , 1979, Journal of biomechanics.