Structure descriptor for surface passivation in the simulation of atomistic models

AbstractSurface passivation is an essential step for atomistic simulations. There can be many possible surface passivation results for a given device model, such as semiconductor devices that consist of Si, GaAs, or other materials because the bonding directions of the surface atoms may not be unique. Based on the structure analysis of the given model, a generation method with structure descriptor (SDG) is proposed for surface passivation. Compared with other existing solutions, the SDG method not only provides trimmer results, but also reduces the torsion angle energy of the model, which is preferred in the simulation of atomistic models. The efficiency of this method was validated through test results from several applications.摘要创新点本文提出一种利用分析原子器件模型几何结构的方法辅助进行表面钝化的方法。相较于基于原子构型的表面钝化方法, 这种新方法的优点包括: 1、利用结构描述子可以对各种原子模型产生更齐整的表面钝化模型。2、结构描述子可以从给定的原子模型进行结构分析后产生, 无需附加的模型材料信息。3、提出的表面钝化方法易于拓展到其它拥有晶体结构的原子模型。

[1]  A. N. Khondker,et al.  Theory of conduction in polysilicon: Drift-diffusion approach in crystalline-amorphous-crystalline semiconductor system—Part I: Small signal theory , 1984, IEEE Transactions on Electron Devices.

[2]  A. N. Khondker,et al.  Theory of conduction in polysilicon: Drift-diffusion approach in crystalline-amorphous-crystalline semiconductor system—Part II: General I-V theory , 1984, IEEE Transactions on Electron Devices.

[3]  M. Green Intrinsic concentration, effective densities of states, and effective mass in silicon , 1990 .

[4]  Northrup Structure of Si(100)H: Dependence on the H chemical potential. , 1991, Physical review. B, Condensed matter.

[5]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[6]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[7]  I. Zevenbergen,et al.  Magnetic resonance spectroscopy of hydrogen-passivated double donors in silicon , 1996 .

[8]  U. Hansen,et al.  Hydrogen passivation of silicon surfaces: A classical molecular-dynamics study , 1998 .

[9]  C. Dekker,et al.  Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.

[10]  Jonathan W. Essex,et al.  A review of protein-small molecule docking methods , 2002, J. Comput. Aided Mol. Des..

[11]  V. Yelundur Understanding and Implementation of Hydrogen Passivation of Defects in String Ribbon Silicon for High-Efficiency, Manufacturable, Silicon Solar Cells , 2003 .

[12]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[13]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[14]  Michael G. Strintzis,et al.  Three-Dimensional Shape-Structure Comparison Method for Protein Classification , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[15]  A. Williamson,et al.  First principles simulations of the structural and electronic properties of silicon nanowires , 2006 .

[16]  D. Vasileska,et al.  Semiconductor Device Modeling , 2008 .

[17]  M. Furuhashi,et al.  Chiral vector determination of carbon nanotubes by observation of interference patterns near the end cap. , 2008, Physical review letters.

[18]  A. Asenov,et al.  Impact of Body-Thickness-Dependent Band Structure on Scaling of Double-Gate MOSFETs: A DFT/NEGF Study , 2009, IEEE Transactions on Nanotechnology.

[19]  M. Huang,et al.  First-principles study of GaAs(001)-β2(2×4) surface oxidation and passivation with H, Cl, S, F, and GaO , 2010 .

[20]  W. Haensch,et al.  Sub-10 nm carbon nanotube transistor , 2011 .

[21]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[22]  P. Chan,et al.  First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain , 2013, IEEE Transactions on Electron Devices.

[23]  Jun Z. Huang,et al.  A multi-scale modeling of junctionless field-effect transistors , 2013 .

[24]  O. Velichko,et al.  Simulation of hydrogen diffusion and boron passivation in crystalline silicon , 2013, 1301.5532.

[25]  Lianmao Peng,et al.  Carbon based nanoelectronics: Materials and devices , 2014 .