Retinal nerve fiber layer analysis in the diagnosis of glaucoma.

PURPOSE OF REVIEW The detection of optic disc and retinal nerve fiber layer damage and change is the cornerstone of glaucoma management. Assessment of the retinal nerve fiber layer for localized and diffuse damage has been traditionally based on clinical examination, with documentation of change primarily qualitative. With the latest improvements in optical imaging instruments, objective and quantitative measurements of the retinal nerve fiber layer are now possible. This review summarizes the results from recent cross-sectional studies evaluating the discriminating ability of automated retinal nerve fiber layer measurements to detect glaucoma, and from longitudinal studies assessing the ability to predict and monitor glaucomatous changes. RECENT FINDINGS Numerous cross-sectional studies have documented good diagnostic accuracy of a scanning laser polarimeter (GDx VCC), the optical coherence tomograph (Stratus), and the Heidelberg Retina Tomograph retinal nerve fiber layer measurements for differentiating between healthy and glaucoma eyes. There are only limited data available on the ability of these retinal nerve fiber layer measurements to document change over time. SUMMARY It is essential that the clinician understand the specific strengths and weaknesses of each technique so that only good quality retinal nerve fiber layer information will be used in conjunction with careful clinical examination and visual function testing for glaucoma management decisions. Longitudinal studies are needed to evaluate the ability of these instruments to document retinal nerve fiber layer change over time.

[1]  Jacques Gresset,et al.  Validity of screening for glaucomatous optic nerve damage using confocal scanning laser ophthalmoscopy (Heidelberg Retina Tomograph II) in high-risk populations: a pilot study. , 2005, Ophthalmology.

[2]  D. Henson,et al.  The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma. , 2005, Health technology assessment.

[3]  D. Garway-Heath,et al.  Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements , 2005, British Journal of Ophthalmology.

[4]  Christopher Kai-shun Leung,et al.  Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, I: correlation analysis in glaucoma. , 2005, Investigative ophthalmology & visual science.

[5]  J. Beiser,et al.  Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. , 2005, Archives of ophthalmology.

[6]  Edward A Essock,et al.  Analysis of GDx-VCC polarimetry data by Wavelet-Fourier analysis across glaucoma stages. , 2005, Investigative ophthalmology & visual science.

[7]  R. Knighton,et al.  Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. , 2005, Investigative ophthalmology & visual science.

[8]  Hiroshi Ishikawa,et al.  Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[9]  B. Chauhan,et al.  Longitudinal changes in the visual field and optic disc in glaucoma , 2005, Progress in Retinal and Eye Research.

[10]  David P Crabb,et al.  A new statistical approach for quantifying change in series of retinal and optic nerve head topography images. , 2005, Investigative ophthalmology & visual science.

[11]  Mei-Ling Huang,et al.  Discrimination between normal and glaucomatous eyes using Stratus optical coherence tomography in Taiwan Chinese subjects , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[12]  G. Wollstein,et al.  Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. , 2005, Archives of ophthalmology.

[13]  T. Sejnowski,et al.  Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. , 2005, Investigative ophthalmology & visual science.

[14]  Robert N Weinreb,et al.  Comparability of retinal nerve fiber layer thickness measurements of optical coherence tomography instruments. , 2005, Investigative ophthalmology & visual science.

[15]  Wing-Ho Yung,et al.  Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. , 2005, Ophthalmology.

[16]  G. Ravalico,et al.  Comparing Measurements of Retinal Nerve Fiber Layer Thickness Obtained on Scanning Laser Polarimetry with Fixed and Variable Corneal Compensator , 2005, European journal of ophthalmology.

[17]  W. Feuer,et al.  Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation. , 2005, American journal of ophthalmology.

[18]  Christopher Kai-shun Leung,et al.  Analysis of retinal nerve fiber layer and optic nerve head in glaucoma with different reference plane offsets, using optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[19]  P. Kóthy,et al.  Comparison between fixed-angle and customised corneal-polarisation compensation methods in scanning laser polarimetric measurement of the retinal nerve fibre layer in glaucoma , 2005, Eye.

[20]  Philip P. Chen,et al.  Predicting Subsequent Visual Field Loss in Glaucomatous Subjects With Disc Hemorrhage Using Retinal Nerve Fiber Layer Polarimetry , 2005, Journal of glaucoma.

[21]  W. Yung,et al.  Evaluation of Scanning Resolution on Retinal Nerve Fiber Layer Measurement Using Optical Coherence Tomography in Normal and Glaucomatous Eyes , 2004, Journal of glaucoma.

[22]  Robert N Weinreb,et al.  Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. , 2004, American journal of ophthalmology.

[23]  T. Sejnowski,et al.  Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. , 2004, Investigative ophthalmology & visual science.

[24]  R. Hitchings,et al.  Tomographic identification of neuroretinal rim loss in high-pressure, normal-pressure, and suspected glaucoma. , 2004, Investigative ophthalmology & visual science.

[25]  Robert N Weinreb,et al.  Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. , 2004, Investigative ophthalmology & visual science.

[26]  F. Medeiros,et al.  Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. , 2004, Archives of ophthalmology.

[27]  H. Lemij,et al.  Variable corneal compensation improves discrimination between normal and glaucomatous eyes with the scanning laser polarimeter. , 2004, Ophthalmology.

[28]  C. Langlotz Fundamental measures of diagnostic examination performance: usefulness for clinical decision making and research. , 2003, Radiology.

[29]  E. Blumenthal,et al.  Inter-device reproducibility of the scanning laser polarimeter with variable cornea compensation , 2003, Eye.

[30]  Philip P. Chen,et al.  Scanning laser polarimetry and detection of progression after optic disc hemorrhage in patients with glaucoma. , 2003, Archives of ophthalmology.

[31]  L. Zangwill,et al.  Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. , 2003, Archives of ophthalmology.

[32]  R. Knighton,et al.  Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry. , 2002, Ophthalmology.

[33]  Robert N Weinreb,et al.  Correction for corneal polarization axis improves the discriminating power of scanning laser polarimetry. , 2002, American journal of ophthalmology.

[34]  A. Walter,et al.  [Reproducibility of measuring retinal nerve fiber density. Comparison of optical coherence tomography with the nerve fiber analyzer and the Heidelberg retinal tomography device]. , 2002, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[35]  D. Greenfield,et al.  Optic nerve and retinal nerve fiber layer analyzers in glaucoma , 2002, Current opinion in ophthalmology.

[36]  B C Chauhan,et al.  Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. , 2001, Archives of ophthalmology.

[37]  Jost B Jonas,et al.  Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc , 1999, The British journal of ophthalmology.

[38]  L. Zangwill,et al.  QUANTITATIVE METHODS FOR EVALUATING THE RETINAL NERVE FIBER LAYER IN GLAUCOMA , 1998 .

[39]  L. Zangwill,et al.  Relationship of optic disc topography to optic nerve fiber number in glaucoma. , 1998, Archives of ophthalmology.

[40]  J. Jonas,et al.  Evaluation of the retinal nerve fiber layer. , 1996, Survey of ophthalmology.

[41]  G. Guyatt,et al.  Users' guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. , 1994, JAMA.

[42]  G. Guyatt Users' guides to the medical literature : essentials of evidence-based clinical practice , 2008 .

[43]  Makoto Nakamura,et al.  Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[44]  F. Medeiros,et al.  Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. , 2005, American journal of ophthalmology.

[45]  Hiroshi Ishikawa,et al.  Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. , 2005, American journal of ophthalmology.

[46]  J. Funk,et al.  [Diagnostic value of nerve fibre layer photography in glaucoma]. , 2005, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[47]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.