Efficient implementations of the quantum Fourier transform

[1]  M. S. Zubairy,et al.  Cavity QED implementation of the discrete quantum Fourier transform , 2002 .

[2]  Dieter Suter,et al.  Scalable architecture for spin-based quantum computers with a single type of gate , 2002 .

[3]  Rebing Wu,et al.  Explicitly solvable extremals of time optimal control for 2-level quantum systems , 2002 .

[4]  Timothy F. Havel,et al.  Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.

[5]  D. Collins Modified Grover's algorithm for an expectation-value quantum computer , 2001, quant-ph/0111108.

[6]  Y. Yamamoto,et al.  All-silicon quantum computer. , 2001, Physical review letters.

[7]  R. Brockett,et al.  Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2001, quant-ph/0106099.

[8]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[9]  G. Long,et al.  Analysis of density matrix reconstruction in NMR quantum computing , 2000, quant-ph/0012047.

[10]  J. H. Wu,et al.  Implementing universal multiqubit quantum logic gates in three- and four-spin systems at room temperature , 2000, quant-ph/0008110.

[11]  A. Fahmy,et al.  Rapid solution of problems by nuclear-magnetic-resonance quantum computation , 2000, quant-ph/0007043.

[12]  S. Lloyd,et al.  Implementation of the quantum Fourier transform. , 1999, Physical Review Letters.

[13]  L. Vandersypen,et al.  Experimental realization of an order-finding algorithm with an NMR quantum computer. , 2000, Physical review letters.

[14]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[15]  B. E. Kane,et al.  Silicon‐Based Quantum Computation , 2000, quant-ph/0003031.

[16]  J. A. Jones,et al.  NMR Quantum Computation: A Critical Evaluation , 2000, quant-ph/0002085.

[17]  Timothy F. Havel,et al.  Generalized methods for the development of quantum logic gates for an NMR quantum information processor , 1999 .

[18]  Jun Luo,et al.  Experimental realization of discrete fourier transformation on NMR quantum computers , 1999, quant-ph/9905083.

[19]  Jonathan A. Jones,et al.  Efficient refocusing of one-spin and two-spin interactions for NMR quantum computation. , 1999, Journal of magnetic resonance.

[20]  N. Linden,et al.  An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer , 1998, quant-ph/9808039.

[21]  D. Leung,et al.  Bulk quantum computation with nuclear magnetic resonance: theory and experiment , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  R. Jozsa Quantum algorithms and the Fourier transform , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  E. Knill,et al.  EFFECTIVE PURE STATES FOR BULK QUANTUM COMPUTATION , 1997, quant-ph/9706053.

[25]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[26]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[27]  Barenco,et al.  Approximate quantum Fourier transform and decoherence. , 1996, Physical Review A. Atomic, Molecular, and Optical Physics.

[28]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[29]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.