Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice

Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems.

Ellen F. Macnamara | J. Constantino | J. Graham | A. Afenjar | C. Tifft | W. Gahl | N. Hauser | X. de la Cruz | V. Faundes | S. Banka | S. Wortmann | B. Cogné | Sarah E. Sheppard | M. Wilke | D. Viskochil | P. Arn | L. Faivre | B. Dauriat | R. Schnur | T. Drivas | C. Philippe | R. Guerrini | D. Mei | M. V. van Slegtenhorst | A. Rauch | C. Zweier | M. Simon | Maureen S. Mulhern | Y. Duffourd | P. Joset | E. Kamsteeg | L. Raymond | N. Akizu | F. Kaiser | H. Stessman | A. van Haeringen | S. Moutton | Renata Pellegrino da Silva | B. Callewaert | J. Juusola | C. Brewer | C. Deshpande | A. Saggar | C. Y. Lim | J. Siedlik | H. Journel | C. Mignot | A. Kuechler | J. Lespinasse | B. Keren | C. Dubourg | K. Steindl | Dong Li | E. Bhoj | D. Doummar | N. Lippa | W. Shen | Lindsay B. Henderson | Pearl Lee | Ajith Kumar | Ç. Akman | Rebecca L. Miller | T. Tan | F. Elmslie | I. Parenti | M. Au | M. Nizon | S. Grotto | Anne-Sophie Denommé-Pichon | A. Reis | L. Bryant | F. Mari | L. Islam | L. Hennessy | Chin Yan Lim | J. Koch | Ilse Meerschaut | J. Sánchez del Pozo | Kara Ranguin | F. Renaldo | A. Vitobello | Y. van Ierland | J. Hallgren | Çiğdem Akman | S. Koudijs | J. Palumbos | J. L. Lezana Rosales | F. Démurger | R. Mao | D. Pier | Devon Haynes | Courtney Vaccaro | L. Pollack | N. Padilla | Richard A. Person | Jin Yun Helen Chen | Jason Hulen | Marisa V. Andrews | F. Tran Mau-Them | R. Pérez de la Fuente | A. Cueto-González | Dustin Baldridge | Ø. Busk | Marie F. Smeland | Michael E. March | Sarah K. Macklin-Mantia | A. Hing | Rong Mao | Jodi Hallgren | Brynn Robertson | Courtney N. Vaccaro | A. Raper | Sacha Weber | Penny M. Chow | Hannah Titheradge | Rochelle N Wickramasekara | Marco Flores-Mendez | David C. Dredge | Cynthia J. Watson | Jacqueline Smiler | Abdias Diaz-Rosado | Isabella Peixoto de Barcelos | Zhao Xiang Choa | I. Snoeck-Streef | Jessica Maffeo | J. Chen | M. F. Smeland | J. Hulen | T. Tan | Natália Padilla | A. Denommé-Pichon | L. Faivre | Martina Wilke | James Lespinasse | Anita Rauch | Víctor Faundes | Marco Flores-Mendez | John M. Graham | William Gahl | Frank J. Kaiser | Xavier de la Cruz | R. Guerrini | Ajith Kumar | Dong Li | A. Cueto-González | John Constantino | Rochelle N Wickramasekara | Cynthia J Watson | Pearl Lee | M. C. Simon | Abdias Diaz‐Rosado | Chin Yan Lim | Natalie Lippa | Irina Snoeck-Streef | Penny Chow | Anne V Hing | Wei Shen | David H Viskochil | Natalie Hauser | Rebecca Miller | Jessica Maffeo | Carole Brewer | David Dredge | Danielle Pier | Johannes Koch | Laura Hennessy | Richard Person | Holly A F Stessman

[1]  P. Abel,et al.  KMT5B is required for early motor development , 2022, Frontiers in Genetics.

[2]  Vered Kunik,et al.  Refining the Phenotypic Spectrum of KMT5B-Associated Developmental Delay , 2022, Frontiers in Pediatrics.

[3]  Hui Guo,et al.  Loss-of-function of KMT5B leads to neurodevelopmental disorder and impairs neuronal development and neurogenesis. , 2022, Journal of genetics and genomics = Yi chuan xue bao.

[4]  Neville E. Sanjana,et al.  Autism genes converge on asynchronous development of shared neuron classes , 2022, Nature.

[5]  Zhen Yan,et al.  Autism risk gene KMT5B deficiency in prefrontal cortex induces synaptic dysfunction and social deficits via alterations of DNA repair and gene transcription , 2021, Neuropsychopharmacology.

[6]  H. Stessman,et al.  Differential effects by sex with Kmt5b loss , 2021, Autism research : official journal of the International Society for Autism Research.

[7]  J. Eubanks,et al.  Impaired Regulation of Histone Methylation and Acetylation Underlies Specific Neurodevelopmental Disorders , 2021, Frontiers in Genetics.

[8]  C. Cytrynbaum,et al.  De Novo Variants in the ATPase Module of MORC2 Cause a Neurodevelopmental Disorder with Growth Retardation and Variable Craniofacial Dysmorphism. , 2020, American journal of human genetics.

[9]  Jonathan K. Vis,et al.  Mutalyzer 2: next generation HGVS nomenclature checker , 2020, bioRxiv.

[10]  Maximilian E. R. Weiss,et al.  Novel pathogenic variants and multiple molecular diagnoses in neurodevelopmental disorders , 2019, Journal of Neurodevelopmental Disorders.

[11]  H. Stessman,et al.  Histone 4 Lysine 20 Methylation: A Case for Neurodevelopmental Disease , 2019, Biology.

[12]  B. Newland,et al.  Extracellular Matrix Components HAPLN1, Lumican, and Collagen I Cause Hyaluronic Acid-Dependent Folding of the Developing Human Neocortex , 2018, Neuron.

[13]  Chi Ma,et al.  Suv4-20h1 promotes G1 to S phase transition by downregulating p21WAF1/CIP1 expression in chronic myeloid leukemia K562 cells , 2018, Oncology letters.

[14]  Joshua C Randall,et al.  Histone Lysine Methylases and Demethylases in the Landscape of Human Developmental Disorders. , 2018, American journal of human genetics.

[15]  K. Biggar,et al.  Beyond histones – the expanding roles of protein lysine methylation , 2017, The FEBS journal.

[16]  S. Elmore,et al.  Histology Atlas of the Developing Prenatal and Postnatal Mouse Central Nervous System, with Emphasis on Prenatal Days E7.5 to E18.5 , 2017, Toxicologic pathology.

[17]  Lauren E. Libero,et al.  In pursuit of neurophenotypes: The consequences of having autism and a big brain , 2017, Autism research : official journal of the International Society for Autism Research.

[18]  L. Buzanska,et al.  Epigenetic Modulation of Stem Cells in Neurodevelopment: The Role of Methylation and Acetylation , 2017, Front. Cell. Neurosci..

[19]  Bradley P. Coe,et al.  Targeted sequencing identifies 91 neurodevelopmental disorder risk genes with autism and developmental disability biases , 2017, Nature Genetics.

[20]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[21]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[22]  Chin-Hsing Annie Lin,et al.  Cross-species analyses unravel the complexity of H3K27me3 and H4K20me3 in the context of neural stem progenitor cells , 2016, Neuroepigenetics.

[23]  Silvio C. E. Tosatto,et al.  The RING 2.0 web server for high quality residue interaction networks , 2016, Nucleic Acids Res..

[24]  S. Kostin,et al.  Regulation of Skeletal Muscle Stem Cell Quiescence by Suv4-20h1-Dependent Facultative Heterochromatin Formation. , 2016, Cell stem cell.

[25]  Yujun Han,et al.  Incorporating Functional Information in Tests of Excess De Novo Mutational Load. , 2015, American journal of human genetics.

[26]  Maria K. Lehtinen,et al.  Development and functions of the choroid plexus–cerebrospinal fluid system , 2015, Nature Reviews Neuroscience.

[27]  A. Hannan,et al.  The Role of Epigenetic Change in Autism Spectrum Disorders , 2015, Front. Neurol..

[28]  D. Valle,et al.  New Tools for Mendelian Disease Gene Identification: PhenoDB Variant Analysis Module; and GeneMatcher, a Web‐Based Tool for Linking Investigators with an Interest in the Same Gene , 2015, Human mutation.

[29]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[30]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[31]  G. Scarano,et al.  Molecular Analysis, Pathogenic Mechanisms, and Readthrough Therapy on a Large Cohort of Kabuki Syndrome Patients , 2014, Human mutation.

[32]  Michal Zimmermann,et al.  53BP1: pro choice in DNA repair. , 2014, Trends in cell biology.

[33]  Douglas E. V. Pires,et al.  mCSM: predicting the effects of mutations in proteins using graph-based signatures , 2013, Bioinform..

[34]  J. Min,et al.  Crystal structures of the human histone H4K20 methyltransferases SUV420H1 and SUV420H2 , 2013, FEBS letters.

[35]  V. Narayanan,et al.  Epigenetics, Autism Spectrum, and Neurodevelopmental Disorders , 2013, Neurotherapeutics.

[36]  O. Hermanson,et al.  Like a rolling histone: epigenetic regulation of neural stem cells and brain development by factors controlling histone acetylation and methylation. , 2013, Biochimica et biophysica acta.

[37]  G. Schotta,et al.  Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene , 2013, PLoS genetics.

[38]  D. Reinberg,et al.  The role of PR-Set7 in replication licensing depends on Suv4-20h. , 2012, Genes & development.

[39]  M. Simpson,et al.  De novo mutations in MLL cause Wiedemann-Steiner syndrome. , 2012, American journal of human genetics.

[40]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[41]  Sumita Bhaduri-McIntosh,et al.  Establishment of Epstein-Barr Virus Growth-transformed Lymphoblastoid Cell Lines , 2011, Journal of visualized experiments : JoVE.

[42]  T. Gómez,et al.  Regulation of axonal outgrowth and pathfinding by integrin–ecm interactions , 2011, Developmental neurobiology.

[43]  Liewei Wang,et al.  MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites , 2010, Nature.

[44]  M. Ehlers,et al.  TGF-β Signaling Specifies Axons during Brain Development , 2010, Cell.

[45]  Jodi Gureasko,et al.  Role of the histone domain in the autoinhibition and activation of the Ras activator Son of Sevenless , 2010, Proceedings of the National Academy of Sciences.

[46]  G. Schotta,et al.  A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. , 2008, Genes & development.

[47]  Peng-Fei Xu,et al.  Genome-Wide Survey and Developmental Expression Mapping of Zebrafish SET Domain-Containing Genes , 2008, PloS one.

[48]  W. Wurst,et al.  EUCOMM--the European conditional mouse mutagenesis program. , 2007, Briefings in functional genomics & proteomics.

[49]  Richa Agarwala,et al.  COBALT: constraint-based alignment tool for multiple protein sequences , 2007, Bioinform..

[50]  C. Ali,et al.  Transforming growth factor-β signalling in brain disorders , 2006 .

[51]  Cyrus Martin,et al.  The diverse functions of histone lysine methylation , 2005, Nature Reviews Molecular Cell Biology.

[52]  Christopher P Austin,et al.  The Knockout Mouse Project , 2004, Nature Genetics.

[53]  Danny Reinberg,et al.  A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. , 2004, Genes & development.

[54]  E Courchesne,et al.  Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. , 2002, Neuropediatrics.

[55]  Y. Fukushima,et al.  Haploinsufficiency of NSD1 causes Sotos syndrome , 2002, Nature Genetics.

[56]  M. Metzker,et al.  The sequence and gene characterization of a 400-kb candidate region for IDDM4 on chromosome 11q13. , 2001, Genomics.

[57]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[58]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[59]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[60]  H. Eisenberg,et al.  Cerebrospinal fluid overproduction and hydrocephalus associated with choroid plexus papilloma. , 1974, Journal of neurosurgery.