Extending Compositional Message Sequence Graphs

We extend the formal developments for message sequence charts (MSCs) to support scenarios with lost and found messages. We define a notion of extended compositional message sequence charts (ECMSCs) which subsumes the notion of compositional message sequence charts in expressive power but additionally allows to define lost and found messages explicitly. As usual, ECMSCs can be combined by means of choice and repetition to (extended) compositional message sequence graphs.We show that--despite extended expressive power--model checking of monadic second-order logic (MSO) for this framework remains to be decidable. The key technique to achieve our results is to use an extended notion for linearizations.

[1]  Dietrich Kuske,et al.  A Further Step towards a Theory of Regular MSC Languages , 2002, STACS.

[2]  Doron A. Peled,et al.  Specification and Verification of Message Sequence Charts , 2000, FORTE.

[3]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[4]  Madhavan Mukund,et al.  Towards a Theory of Regular MSC Languages , 1999 .

[5]  David Harel,et al.  LSCs: Breathing Life into Message Sequence Charts , 1999, Formal Methods Syst. Des..

[6]  Rajeev Alur,et al.  Model Checking of Message Sequence Charts , 1999, CONCUR.

[7]  Madhavan Mukund,et al.  Regular Collections of Message Sequence Charts , 2000, MFCS.

[8]  Anca Muscholl,et al.  Compositional message sequence charts , 2001, International Journal on Software Tools for Technology Transfer.

[9]  Michel A. Reniers,et al.  High-level message sequence charts , 1997, SDL Forum.

[10]  Madhavan Mukund,et al.  On Message Sequence Graphs and Finitely Generated Regular MSC Languages , 2000, ICALP.

[11]  Yves Métivier,et al.  Partial Commutation and Traces , 1997, Handbook of Formal Languages.

[12]  P. Madhusudan,et al.  Reasoning about Sequential and Branching Behaviours of Message Sequence Graphs , 2001, ICALP.

[13]  P. S. Thiagarajan,et al.  A Trace Consistent Subset of PTL , 1995, CONCUR.

[14]  Benedikt Bollig,et al.  Generalised Regular MSC Languages , 2002, FoSSaCS.

[15]  Rémi Morin,et al.  Recognizable Sets of Message Sequence Charts , 2002, STACS.

[16]  Ramaswamy Ramanujam,et al.  Reasoning about Message Passing in Finite State Environments , 2000, ICALP.

[17]  P. Madhusudan,et al.  Beyond Message Sequence Graphs , 2001, FSTTCS.

[18]  Igor Walukiewicz,et al.  An expressively complete linear time temporal logic for Mazurkiewicz traces , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[19]  Benedikt Bollig,et al.  Deciding LTL over Mazurkiewicz traces , 2001, Proceedings Eighth International Symposium on Temporal Representation and Reasoning. TIME 2001.

[20]  B. Bollig,et al.  Modelling, specifying, and verifying message passing systems , 2001, Proceedings Eighth International Symposium on Temporal Representation and Reasoning. TIME 2001.