A universal symmetry detection algorithm

Research on symmetry detection focuses on identifying and detecting new types of symmetry. We present an algorithm that is capable of detecting any type of permutation-based symmetry, including many types for which there are no existing algorithms. General symmetry detection is library-based, but symmetries that can be parameterized, (i.e. total, partial, rotational, and dihedral symmetry), can be detected without using libraries. In many cases it is faster than existing techniques. Furthermore, it is simpler than most existing techniques, and can easily be incorporated into existing software.

[1]  Kuo-Hua Wang,et al.  Symmetry detection for incompletely specified functions , 2004, Proceedings. 41st Design Automation Conference, 2004..

[2]  Rupak Majumdar,et al.  Exploiting Symmetries to Speed Up SAT-Based Boolean Matching for Logic Synthesis of FPGAs , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  D. M. Miller,et al.  Multivariable symmetries and their detection , 1983 .

[4]  Jon C. Muzio,et al.  Antisymmetries in the realization of Boolean functions , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[5]  Donald S. Passman,et al.  PERMUTATION GROUPS , 2019, Group Theory for Physicists.

[6]  M. Chrzanowska-Jeske Generalized symmetric variables , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[7]  Richard C. Born,et al.  Transformation of Switching Functions to Completely Symmetric Switching Functions , 1968, IEEE Transactions on Computers.

[8]  Rolf Drechsler,et al.  Sympathy: fast exact minimization of fixed polarity Reed-Muller expressions for symmetric functions , 1995, Proceedings the European Design and Test Conference. ED&TC 1995.

[9]  Fabrizio Luccio,et al.  Synthesis of Autosymmetric Functions in a New Three-Level Form , 2007, Theory of Computing Systems.

[10]  Andy King,et al.  An Anytime Algorithm for Generalized Symmetry Detection in ROBDDs , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Peter M. Maurer,et al.  A logic-to-logic comparator for VLSI layout verification , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  Malgorzata Marek-Sadowska,et al.  Generalized Reed-Muller Forms as a Tool to Detect Symmetries , 1996, IEEE Trans. Computers.

[13]  Premachandran R. Menon,et al.  Delay-testable implementations of symmetric functions , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Michael Weber,et al.  Detection of symmetry of Boolean functions represented by ROBDDs , 1993, ICCAD '93.

[15]  C. L. Liu,et al.  Local transformation techniques for multi-level logic circuits utilizing circuit symmetries for power reduction , 1998, ISLPED '98.

[16]  D. Holt Enumerating subgroups of the symmetric group , 2010 .

[17]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[18]  D. Robinson A Course in the Theory of Groups , 1982 .

[19]  Christoph Scholl,et al.  Minimizing ROBDD sizes of incompletely specified Boolean functions by exploiting strong symmetries , 1997, Proceedings European Design and Test Conference. ED & TC 97.

[20]  Sharad Malik,et al.  Limits of using signatures for permutation independent Boolean comparison , 1995, ASP-DAC '95.

[21]  Alan Mishchenko,et al.  Generalized Symmetries in Boolean Functions: Fast Computation and Application to Boolean Matching , 2005 .

[22]  Malgorzata Marek-Sadowska,et al.  Boolean Matching Using Generalized Reed-Muller Forms , 1994, 31st Design Automation Conference.

[23]  Gerhard W. Dueck,et al.  Comments on "Sympathy: fast exact minimization of fixedpolarity Reed-Muller expansion for symmetric functions" , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[24]  Karem A. Sakallah,et al.  Generalized symmetries in Boolean functions , 2000, IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140).

[25]  Massoud Pedram,et al.  Canonical form based boolean matching and symmetry detection in logic synthesis and verification , 2006 .

[26]  Igor L. Markov,et al.  Faster symmetry discovery using sparsity of symmetries , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[27]  M. Chrzanowska-Jeske Generalized symmetric and generalized pseudo-symmetric functions , 1999, ICECS'99. Proceedings of ICECS '99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357).

[28]  Malgorzata Marek-Sadowska,et al.  In-place delay constrained power optimization using functional symmetries , 2001, DATE '01.

[29]  Nripendra N. Biswas,et al.  On Identification of Totally Symmetric Boolean Functions , 1970, IEEE Transactions on Computers.

[30]  Peter M. Maurer Conjugate symmetry , 2011, Formal Methods Syst. Des..