Structure, function, and evolution of phosphoglycerate mutases: comparison with fructose-2,6-bisphosphatase, acid phosphatase, and alkaline phosphatase.

2. Cofactor dependent Saccharomyces cerevisiae phosphoglycerate mutase . . . . . . . . . . . . . . . . 265 2.1. Structural aspects of Saccharomyces cerevisiae phosphoglycerate mutase . . . . . . . . . . 265 2.2. Mechanism of catalysis of the S. cerevisiae dPGM . . . . . . . . . . . . . . . . . . . . . . . . . . 270 2.3. Structural comparison of dPGM with other enzymes . . . . . . . . . . . . . . . . . . . . . . . . 270 2.3.1. Structural comparison of S. cerevisiae dPGM with 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 2.3.2. Structural comparison of S. cerevisiae dPGM with acid phosphatase . . . . . . . 272 2.3.3. Overall comparison of active sites of dPGM, Fru26P2ase, and AcPase . . . . . 273

[1]  M. Applebury,et al.  Escherichia coli co (II) alkaline phsophatase. , 1969, The Journal of biological chemistry.

[2]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[3]  A M Lesk,et al.  The evolution of protein structures. , 1987, Cold Spring Harbor symposia on quantitative biology.

[4]  X. Graña,et al.  Cloning and sequencing of a cDNA encoding 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from maize. Possible relationship to the alkaline phosphatase family. , 1992, The Journal of biological chemistry.

[5]  B. Vallee,et al.  Role of magnesium in Escherichia coli alkaline phosphatase. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[7]  R J Fletterick,et al.  Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[8]  G. Charles Dismukes,et al.  Manganese Enzymes with Binuclear Active Sites. , 1996, Chemical reviews.

[9]  X. Graña,et al.  2,3-Bisphosphoglycerate-independent phosphoglycerate mutase is conserved among different phylogenic kingdoms. , 1995, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[10]  M. Zhou,et al.  Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. , 1992, The Journal of biological chemistry.

[11]  R. Heinrikson,et al.  Evolution of phosphofructokinase—gene duplication and creation of new effector sites , 1984, Nature.

[12]  A. D. McWilliams,et al.  Wheat germ phosphoglycerate mutase: evidence for a metalloenzyme. , 1986, Biochemical and biophysical research communications.

[13]  P. Setlow,et al.  The internal pH of the forespore compartment of Bacillus megaterium decreases by about 1 pH unit during sporulation , 1994, Journal of bacteriology.

[14]  K. Uyeda,et al.  Molecular cloning of the DNA and expression and characterization of rat testes fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. , 1991, The Journal of biological chemistry.

[15]  C. Petitclerc,et al.  The Functional Properties of the Zn2+‐and Co2+‐Alkaline Phosphatases of Escherichia coli , 1970 .

[16]  R. Singh,et al.  Phosphoglycerate mutase in developing forespores of Bacillus megaterium may be regulated by the intrasporal level of free manganous ion. , 1978, Biochemical and biophysical research communications.

[17]  S. Rapoport,et al.  THE FORMATION OF 2,3-DIPHOSPHOGLYCERATE IN RABBIT ERYTHROCYTES: THE EXISTENCE OF A DIPHOSPHOGLYCERATE MUTASE , 1950 .

[18]  K. Nakamura,et al.  65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects. , 1983, The Journal of biological chemistry.

[19]  D. Christianson,et al.  Catalysis by metal-activated hydroxide in zinc and manganese metalloenzymes. , 1999, Annual review of biochemistry.

[20]  J. Vincent,et al.  Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. , 1992, Trends in biochemical sciences.

[21]  M. Applebury,et al.  Phosphate binding to alkaline phosphatase. Metal ion dependence. , 1970, The Journal of biological chemistry.

[22]  L. Fothergill-Gilmore Evolution in glycolysis. , 1987, Biochemical Society transactions.

[23]  M. J. Jedrzejas,et al.  Mechanism of Catalysis of the Cofactor-independent Phosphoglycerate Mutase from Bacillus stearothermophilus , 2000, The Journal of Biological Chemistry.

[24]  E. Lamani,et al.  Structural studies on a 2,3-diphosphoglycerate independent phosphoglycerate mutase from Bacillus stearothermophilus. , 1999, Journal of structural biology.

[25]  R. Sasaki,et al.  Yeast phosphoglyceric acid mutase-modifying enzyme. , 1966, Archives of biochemistry and biophysics.

[26]  S. Phillips,et al.  Sulphate ions observed in the 2.12 A structure of a new crystal form of S. cerevisiae phosphoglycerate mutase provide insights into understanding the catalytic mechanism. , 1999, Journal of molecular biology.

[27]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[28]  E. Freese,et al.  Purification and properties of the manganese-dependent phosphoglycerate mutase of Bacillus subtilis , 1979, Journal of bacteriology.

[29]  N. C. Price,et al.  The use of mass spectrometry to examine the formation and hydrolysis of the phosphorylated form of phosphoglycerate mutase , 1995, FEBS letters.

[30]  J. Coleman,et al.  Structure and mechanism of alkaline phosphatase. , 1992, Annual review of biophysics and biomolecular structure.

[31]  P. Setlow,et al.  Cooperative manganese (II) activation of 3-phosphoglycerate mutase of Bacillus megaterium: a biological pH-sensing mechanism in bacterial spore formation and germination. , 1995, Archives of biochemistry and biophysics.

[32]  J. Knowles,et al.  Phosphoglycerate mutases: stereochemical course of the phosphoryl group transfers catalyzed by the cofactor-dependent enzyme from rabbit muscle and the cofactor-independent enzyme from wheat germ. , 1980, Biochemistry.

[33]  L. Hue,et al.  5' flanking sequence and structure of a gene encoding rat 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. F. White,et al.  Substitution of His-181 by alanine in yeast phosphoglycerate mutase leads to cofactor-induced dissociation of the tetrameric structure. , 1993, The Biochemical journal.

[35]  J. Pflugrath,et al.  Crystal structure of the rat liver fructose-2,6-bisphosphatase based on selenomethionine multiwavelength anomalous dispersion phases. , 1996, Biochemistry.

[36]  M. Metzler,et al.  Alkaline phosphatase. 31P NMR probes of the mechanism. , 1985, The Journal of biological chemistry.

[37]  A. Torriani-Gorini Phosphate metabolism and cellular regulation in microorganisms , 1987 .

[38]  S. Grisolía,et al.  Mechanism of action of 2,3-diphosphoglycerate-independent phosphoglycerate mutase. , 1971, Biochemistry.

[39]  E. Schaftingen Fructose 2,6-bisphosphate. , 2006 .

[40]  J. W. Campbell,et al.  Structure of a phosphoglycerate mutase:3-phosphoglyceric acid complex at 1.7 A. , 1999, Acta crystallographica. Section D, Biological crystallography.

[41]  M. Rossman,et al.  Evolution of glycolytic enzymes. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  I. Trayer,et al.  Hexokinase isoenzymes: antigenic cross-reactivities and amino acid compositional relatedness. , 1984, Comparative biochemistry and physiology. B, Comparative biochemistry.

[43]  Z. B. Rose The phosphorylation of yeast phosphoglycerate mutase. , 1971, Archives of biochemistry and biophysics.

[44]  N. C. Price,et al.  Phosphoglycerate mutase from Schizosaccharomyces pombe: development of an expression system and characterisation of three histidine mutants of the enzyme. , 1996, Biochimica et biophysica acta.

[45]  L. Lebioda,et al.  Structural Origins of l(+)-Tartrate Inhibition of Human Prostatic Acid Phosphatase* , 1998, The Journal of Biological Chemistry.

[46]  M. J. Jedrzejas,et al.  Comparison of the binuclear metalloenzymes diphosphoglycerate-independent phosphoglycerate mutase and alkaline phosphatase: their mechanism of catalysis via a phosphoserine intermediate. , 2001, Chemical reviews.

[47]  P. Gettins,et al.  31P nuclear magnetic resonance of phosphoenzyme intermediates of alkaline phosphatase. , 1983, The Journal of biological chemistry.

[48]  P. Setlow,et al.  Levels of H+ and other monovalent cations in dormant and germinating spores of Bacillus megaterium , 1981, Journal of bacteriology.

[49]  M. F. White,et al.  The two analogous phosphoglycerate mutases of Escherichia coli , 1999, FEBS letters.

[50]  M. Lively,et al.  Complete amino acid sequence of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. , 1988, The Journal of biological chemistry.

[51]  D. Christianson Structural chemistry and biology of manganese metalloenzymes. , 1997, Progress in biophysics and molecular biology.

[52]  G. Pons,et al.  Phylogeny and ontogeny of the phosphoglycerate mutases--IV. Distribution of glycerate-2,3-P2 dependent and independent phosphoglycerate mutases in algae, fungi, plants and animals. , 1982, Comparative biochemistry and physiology. B, Comparative biochemistry.

[53]  Michael Y. Galperin,et al.  Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea , 1997, Molecular microbiology.

[54]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[55]  B. Vallee,et al.  Effect of magnesium on the properties of zinc alkaline phosphatase. , 1977, Biochemistry.

[56]  R. Singh,et al.  Purification and properties of phosphoglycerate phosphomutase from spores and cells of Bacillus megaterium , 1979, Journal of bacteriology.

[57]  J. Sowadski,et al.  Refined structure of alkaline phosphatase from Escherichia coli at 2.8 A resolution. , 1985, Journal of molecular biology.

[58]  P. Setlow,et al.  Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis , 1994, Journal of bacteriology.

[59]  Z. B. Rose The enzymology of 2,3-bisphosphoglycerate. , 1980, Advances in enzymology and related areas of molecular biology.

[60]  K. Lin,et al.  Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Use of site-directed mutagenesis to evaluate the roles of His-258 and His-392 in catalysis. , 1990, The Journal of biological chemistry.

[61]  M. Sternberg,et al.  Analysis and predication of structural motifs in the glycolytic enzymes. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  M. J. Jedrzejas,et al.  Structure and mechanism of action of a novel phosphoglycerate mutase from Bacillus stearothermophilus , 2000, The EMBO journal.

[63]  P. Setlow,et al.  Analysis of the relationship between the decrease in pH and accumulation of 3-phosphoglyceric acid in developing forespores of Bacillus species , 1996, Journal of bacteriology.

[64]  Stephen R. Jones,et al.  Stereochemistry of phosphoryl group transfer using a chiral [16O, 17O, 18O] stereochemical course of alkaline phosphatase , 1978, Nature.

[65]  G. Schneider,et al.  Three‐dimensional structure of rat acid phosphatase. , 1993, The EMBO journal.

[66]  M. F. White,et al.  Development of a mutagenesis, expression and purification system for yeast phosphoglycerate mutase. Investigation of the role of active-site His181. , 1992, European journal of biochemistry.

[67]  K. Uyeda,et al.  Bovine Heart Fructose 6-P,2-kinase: Fructose 2,6-Bisphosphatase Messenger-RNA and Gene Structure , 1994 .

[68]  A. Kornberg,et al.  Biochemical studies of bacterial sporulation and germination. XXII. Energy metabolism in early stages of germination of Bacillus megaterium spores. , 1970, The Journal of biological chemistry.

[69]  B. Vallee,et al.  Zinc and magnesium content of alkaline phosphatase from Escherichia coli. , 1975, Biochemistry.

[70]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[71]  J. W. Campbell,et al.  Structure of yeast phosphoglycerate mutase , 1974, Nature.

[72]  N. C. Price,et al.  Inactivation of rabbit muscle phosphoglycerate mutase by limited proteolysis with thermolysin. , 1985, The Biochemical journal.

[73]  E. E. Kim,et al.  Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. , 1991, Journal of molecular biology.

[74]  H. Watson,et al.  The phosphoglycerate mutases. , 1989, Advances in enzymology and related areas of molecular biology.

[75]  P. Gettins,et al.  Alkaline phosphatase, solution structure, and mechanism. , 2006, Advances in enzymology and related areas of molecular biology.

[76]  Michael Y. Galperin,et al.  A superfamily of metalloenzymes unifies phosphopentomutase and cofactor‐independent phosphoglycerate mutase with alkaline phosphatases and sulfatases , 1998, Protein science : a publication of the Protein Society.

[77]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[78]  S. Phillips,et al.  The 2.3 A X-ray crystal structure of S. cerevisiae phosphoglycerate mutase. , 1998, Journal of molecular biology.

[79]  H. Watson,et al.  Structure and activity of phosphoglycerate mutase. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[80]  T. Reid,et al.  17 E. coli Alkaline Phosphatase , 1971 .

[81]  A. Tauler,et al.  Functional homology of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, phosphoglycerate mutase, and 2,3-bisphosphoglycerate mutase. , 1987, Journal of Biological Chemistry.

[82]  P. Leadlay,et al.  Phosphoglycerate mutase from wheat germ: studies with isotopically labeled 3-phospho-D-glycerates showing that the catalyzed reaction is intramolecular. Appendix: phosphoglycerate mutase from wheat germ: isolation, crystallization, and properties. , 1977, Biochemistry.

[83]  J. Knowles,et al.  Phosphoglycerate mutase from wheat germ: studies with 18O-labeled substrate, investigations of the phosphatase and phosphoryl transfer activities, and evidence for a phosphoryl-enzyme intermediate. , 1977, Biochemistry.

[84]  P. Setlow,et al.  Manganese(II) activation of 3-phosphoglycerate mutase of Bacillus megaterium: pH-sensitive interconversion of active and inactive forms. , 1993, Archives of biochemistry and biophysics.

[85]  C. Han,et al.  Active site phosphohistidine peptides from red cell bisphosphoglycerate synthase and yeast phosphoglycerate mutase. , 1979, The Journal of biological chemistry.

[86]  M. F. White,et al.  Dissociation of the tetrameric phosphoglycerate mutase from yeast by a mutation in the subunit contact region. , 1993, The Biochemical journal.

[87]  J. Deisenhofer,et al.  The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase reveals distinct domain homologies. , 1996, Structure.